

ESCUELA POLITÉCNICA DE INGENIERÍA DE GIJÓN

GRADO EN INGENIERÍA DE ORGANIZACIÓN INDUSTRIAL

ÁREA DE PROYECTOS DE INGENIERÍA

ANÁLISIS DE VIABILIDAD AMBIENTAL DE DIFERENTES ESCENARIOS PARA LA VALORIZACIÓN DE LA ESCORIA DE ACERÍA

D^a. GARCÍA BAJO, IRENE TUTOR: D^a. DÍAZ PILOÑETA, MARINA

FECHA: JULIO 2024

RESUMEN

La producción mundial de la industria siderúrgica alcanzó los 1.892.036 miles de toneladas de acero en el año 2023, generando una elevada cantidad de residuos. De estos residuos la escoria BOF tiene unos grandes volúmenes de generación, 150 kg escoria BOF por cada tonelada de acero que terminan acumulados en los vertederos. Además, sus características fisicoquímicas dificultan su reutilización, convirtiendo a la escoria BOF en un grave problema y haciendo que la búsqueda de rutas para su valorización sea una línea de investigación prioritaria.

En este trabajo se ha realizado un Análisis de Ciclo de Vida (ACV) de la "cuna" a la "puerta" para determinar las mejores alternativas a nivel medioambiental para valorizar la escoria BOF. El ACV se centra en comparar tres aplicaciones viables técnicamente que no presentan problemas de inestabilidad volumétrica: **abrasivo en granallado, árido en la construcción de carreteras y agente de encalado.** Como referencia técnica, se van a utilizar tres documentos que recogen ensayos experimentales de la escoria BOF procedente del Principado de Asturias. La Evaluación del Impacto se ha realizado mediante el método *Recipe* utilizando el programa *SimaPro*.

Los resultados concluyen que el escenario con menor impacto ambiental es el escenario de reutilización de la escoria como agente de encalado, seguido de su aplicación en el chorreado de abrasivos. La aplicación más contaminante es la construcción de carreteras. A pesar de esto, los tres escenarios suponen una opción positiva con respecto a la acumulación de la escoria en los vertederos, ya que permiten la recirculación de este residuo siderúrgico convirtiéndolo en un subproducto de valor para otras industrias.

ABSTRACT

The global steel industry production reached 1,892.036 million tons of steel in 2023, generating a high amount of waste. Among this waste, BOF slag has a large generation volume, with 150 kg of BOF slag produced per ton of steel, ending up accumulated in landfills. Furthermore, its physicochemical characteristics make its reuse difficult, turning BOF slag into a serious problem and making the search for valorization routes a priority research line.

In this work, a cradle-to-gate Life Cycle Assessment (LCA) will be conducted to determine the best environmental alternatives for valorizing BOF slag. The LCA focuses on comparing three technically viable applications that do not present volumetric instability issues: abrasive in blasting, aggregate in road construction, and liming agent. As a technical reference, three documents that include experimental tests of BOF slag from the Principado of Asturias will be used. The Impact Assessment has been carried out using the ReCiPe method with the SimaPro software.

The results conclude that the scenario with the lowest environmental impact is the reuse of slag as a liming agent, followed by its application in abrasive blasting. The most polluting application is road construction. Despite this, all three scenarios represent a positive option compared to the accumulation of slag in landfills, as they allow the recirculation of this steelmaking residue, turning it into a valuable by-product for other industries.

Índice

1.	Intro	ducción y objetivos	8
2.	Meto	dología de trabajo	11
3.	Princ	ipios de la economía circular	12
4.	Resid	luos siderúrgicos	15
	4.1	Tipos de residuos siderúrgicos	15
	4.2	Escoria BOF	17
	4.2.1	- Características fisicoquímicas	17
	4.3	Aplicaciones principales escoria BOF	18
	4.3.1	- Eliminación metales pesados	18
	4.3.2	- Revestimiento vertederos y barreras reactivas permeables	19
	4.3.3	- Estabilización lodos depuradora	19
	4.3.4	- Producción Carbonato de Calcio Precipitado (PCC)	20
	4.3.5	- Aplicaciones marinas	20
	4.3.6	- Fabricación de cementos y hormigones	21
	4.3.7	- Balasto ferroviario	22
	4.3.8	- Fabricación de contrapesos	22
	4.3.9	- Carreteras	23
	4.3.1	0 Remediación ambiental	24
	4.3.1	1 Abrasivos	25
5.	Análi	sis de Ciclo de Vida	27
6.	Objet	o y alcance del estudio	31
	6.1	Objetivo y alcance	31
	6.2	Unidad funcional	31
	6.3	Descripción del sistema	31
	6.3.1	- Escenario 1: Escoria BOF como abrasivo para granallado superficial	32
	6.3.2	- Escenario 2: Escoria BOF como árido para la construcción de carreteras	33
	6.3.3	- Escenario 3: Escoria BOF como agente de encalado	35
	6.4	Limitaciones e hipótesis	36
	6.5	Software y base de datos	37
7.	Inver	tario del Ciclo de Vida (ICV)	39
	7.1	Tratamiento	39

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios

para la valorización de la escoria de acería) – Página 5 de 69

	7.1.1 Molienda	39
	7.1.2 Cribado	40
	7.1.3 Cinta transportadora	41
	7.1.4 Secado	41
	7.2 Transporte	42
	7.3 Uso	42
	7.3.1 Escenario 1	42
	7.3.2 Escenario 2	43
	7.3.3 Escenario 3	45
8.	Evaluación e Interpretación del Impacto del Ciclo de Vida (EICV)	48
9.	Conclusiones y líneas futuras	58
10.	Bibliografía	61
11.	Anexos	67
	11.1 Inventario escenario 1	67
	11.2 Inventario escenario 2	68
	11.3 Inventario escenario 3	69

Índice Figuras

Figura 1.1 Gráfica producción por sectores.	9
Figura 1.2 Gráfico uso del acero por sectores.	9
Figura 3.1 Esquema Economía Circular.	12
Figura 4.1 Clasificación de los residuos siderúrgicos según su estado	15
Figura 4.2 Esquema simplificado del proceso general del acero.	16
Figura 5.1. Esquema metodología ACV	27
Figura 6.1 Escenario 1: Escoria BOF como abrasivo para granallado superficial	33
Figura 6.2 Escenario 2: Escoria BOF como árido para la construcción de carreteras	35
Figura 6.3 Escenario 3: Escoria BOF como agente de encalado.	36
Figura 8.1 Resultados del análisis del Escenario 1 por categorías de impacto ReC	CiPe
midpoint normalizado	49
Figura 8.2 Resultados del análisis del Escenario 2 por categorías de impacto ReC	CiPe
midpoint normalizado	50
Figura 8.3 Resultados del análisis de la fase de mezclado por categorías de impacto ReC	CiPe
midpoint normalizado	50
Figura 8.4 Resultados del análisis del Escenario 3 por categorías de impacto ReC	ΞiPe
midpoint normalizado	51
Figura 8.5 Resultados del análisis los tres escenarios por categorías de impacto ReC	CiPe
midpoint normalizado	52
Figura 8.6 Resultados del análisis del Escenario 1 y 3 por categorías de impacto ReC	CiPe
midpoint normalizado	52
Figura 8.7 Gráfico de barras categoría CG tres escenarios.	54
Figura 8.8 Gráfico de barras categoría CG escenario 1 y 3.	54
Figura 8.9 Gráfico de barras categoría ECT tres escenarios.	55
Figura 8.10 Gráfico de barras categoría ETC escenario 1 y 3.	55
Figura 8.11Gráfíco de barras Recipe endpoint tres escenarios.	56
Figura 8.12 Gráfico de barras categoría Salud humana.	57
Figura 8.13 Gráfico de barras categoría Ecosistemas.	57
Figura 8.14 Gráfico de barras categoría Recursos.	57

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios

para la valorización de la escoria de acería) – Página 7 de 69

Índice Tablas

Tabla 4.1. Características físicas de la escoria BOF	17
Tabla 4.2 Composición química media de la escoria BOF	18
Tabla 5.1 Resumen de las categorías de impacto cubiertas por la metodología ReCiPe	29
Tabla 7.1 Características principales arenero.	42
Tabla 7.2 Caudal de aire y potencia del compresor para una boquilla de 3/8" (9,5 mm).	43
Tabla 7.3 Proporciones diferentes componentes de la mezcla asfáltica	43
Tabla 7.4. Datos maquinaria construcción carreteras	44
Tabla 7.5. Consumo combustible maquinaria construcción carreteras	45
Tabla 7.6. Emisiones atmosféricas maquinaria construcción carreteras	45
Tabla 7.7. Cantidades de caliza y las cantidades equivalentes de escoria	46
Tabla 7.8 Tabla resumen inventario.	47
Tabla 8.1 Tabla de categorías de impacto <i>Midpoints</i>	48
Tabla 8.2 Resultados del análisis de los tres escenarios por categorías de impacto Re-	cipe
midpoint	53
Tabla 11.1 Inventario escenario 1.	67
Tabla 11.2 Inventario escenario 2.	68
Tabla 11.3 - Inventario escenario 3	60

1. Introducción y objetivos

El aumento del consumo y de la consiguiente producción industrial ha llevado a una disminución rápida de los recursos naturales disponibles y, de manera simultánea, a un elevado volumen de producción de residuos. La necesidad de eliminar esta espiral de consumo y vertido no es simplemente una tendencia derivada de una mayor concienciación ecológica social, sino que la sostenibilidad de los procesos productivos supone un nuevo factor diferenciador para las empresas y, cada vez más, un requisito indispensable a nivel normativo. En el año 2015 los miembros de la ONU aprobaron la Agenda 2030, la cual incluye los ODS (Objetivos de Desarrollo Sostenible), en concreto el número 12 "producción y consumo responsables" busca disminuir el consumo de recursos naturales.

Según las Naciones Unidas la población mundial alcanzará la cifra de 9.800 millones de personas para el año 2050 [1], por lo tanto, se estima que serán necesarios casi tres planetas Tierra para proporcionar los recursos naturales necesarios si se quiere mantener el estilo de vida actual. Además, se tiene una fuerte dependencia de las materias primas, lo que conlleva un riesgo asociado al suministro, precios elevados y con mucha volatilidad, así como una reducción significativa del capital natural, además de las consiguientes pérdidas económicas.

Todo ello hace que este sistema lineal sea insostenible, por lo tanto, se deben buscar soluciones para reducir la cantidad de materias primas que se extraen de la naturaleza para la fabricación de nuevos productos. Es por ello que, cada vez más, los países desarrollados están adoptando políticas para promover un cambio hacia la llamada economía circular. La economía circular busca maximizar los recursos disponibles, tanto materiales como energéticos, para que estos permanezcan el mayor tiempo posible en el ciclo productivo y aspira a reducir todo lo posible la generación de residuos y a aprovechar al máximo aquellos cuya generación no se haya podido evitar. Pretende, por tanto, desvincular el crecimiento económico del consumo finito de recursos. Así, se extraen materias primas, se fabrican productos y de los residuos generados se recuperan materiales y sustancias que posteriormente se reincorporan de nuevo al proceso productivo.

En la industria se están desarrollando muchos proyectos de investigación y desarrollo con el objetivo de gestionar los residuos que se generan y darles una vida útil. El presente trabajo se centra en la industria siderúrgica, una de las principales industrias masivas de nuestra sociedad, que genera, de manera inherente a su proceso productivo, millones de toneladas de residuos. En el siguiente gráfico (Figura 1.1 [2]) se puede observar la posición que ocupa el sector del metal dentro de toda la industria española.

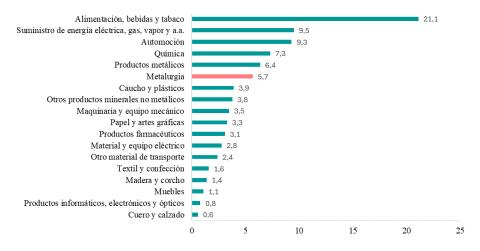


Figura 1.1.- Gráfica producción por sectores.

El acero es uno de los materiales principales dentro de la economía mundial debido a su utilización en diversos sectores como la construcción y la automoción (Figura 1.2 [3]). Gracias al acero se pueden producir diferentes tipos de maquinaria, herramientas, vehículos de transporte, material para edificaciones para mejorar nuestra calidad de vida.

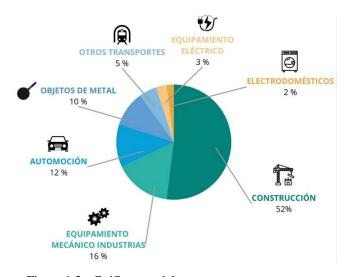


Figura 1.2.- Gráfico uso del acero por sectores.

A nivel mundial, la producción mundial de acero bruto alcanzó los 1.892.036 miles de toneladas en el año 2023 [4] A nivel nacional en el año 2023 se produjeron 11,4 millones de toneladas y el reciclaje se incrementó en un 3,2 % con una reutilización de 9,3 millones de toneladas de chatarra [5]. Concretamente en Asturias, este sector es uno de los principales motores de desarrollo económico y lleva implícita la generación de más de 500.000 toneladas de residuos cada año [6], gran parte de los cuales son enviados al vertedero.

Las escorias (residuos sólidos minerales) son los principales residuos del proceso siderúrgico, y poseen un alto potencial en términos de valorización, por lo que son un recurso reseñable debido a sus posibles aplicaciones potenciales. Las diferentes posibilidades y vías para su valorización han sido ampliamente estudiadas e investigadas por diversos autores. Sin embargo, muchas de estas aplicaciones requieren el tratamiento del material u otros procesos secundarios que posibiliten su valorización. A pesar de que de esta forma queda asegurada una viabilidad técnica, es imprescindible analizar la ganancia o impacto medioambiental que tiene el residuo al ser reintroducido de nuevo en el ciclo productivo, posibilitando de esta forma la elección de la vía más prometedora.

Mediante la realización del presente Trabajo de Fin de Grado se pretende contribuir al desarrollo de la economía circular y mejorar la sostenibilidad en una de las principales industrias a nivel mundial, la siderúrgica, a través de la valorización de sus residuos. Por ello se pretende analizar cuáles son las mejores alternativas a nivel medioambiental para reutilizar uno de los residuos más generados por la industria siderúrgica, la escoria, mediante la realización de un Análisis de Ciclo de Vida (ACV).

2. Metodología de trabajo

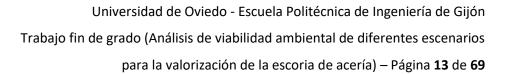
La metodología seguida en este trabajo consiste en realizar una breve introducción sobre los principios de la economía circular y describir los residuos de la industria objeto de estudio. A continuación, se realiza una revisión detallada sobre las diferentes vías investigadas para la reutilización de la escoria, seleccionando las tres más prometedoras sobre las que posteriormente se plantea el Análisis de Ciclo de Vida (ACV). El procedimiento seguido para la realización del ACV se explica de manera detallada en el apartado 5.

Para la elaboración de este trabajo se ha realizado una búsqueda bibliográfica sobre los conocimientos disponibles acerca de la valorización de la escoria BOF, profundizando en sus propiedades fisicoquímicas, en las diferentes alternativas viables técnicamente y en el impacto ambiental de su uso.

Con el propósito de recoger la máxima información se han empleado diferentes motores de búsqueda como: *Web of Science*, *ScienceDirect*, *Google Scholar* y la Biblioteca de la Universidad de Oviedo (BUO). Además, se ha empleado la base de datos *Ecoinvent* para la recogida de datos del inventario.

A la hora de seleccionar los artículos y estudios incluidos en este trabajo, se ha llevado a cabo una búsqueda mediante palabras clave (keywords): BOF steel slag, life cycle assessment, reuse, circular economy, properties, sandblasting, roadconstruction, land remediation.

Los artículos encontrados has sido sometidos a criterios de inclusión y exclusión dónde se han priorizado los artículos con acceso abierto, los estudios publicados en los últimos años y aquellos escritos en inglés o español. Finalmente, estos artículos se han cribado a partir del contenido de sus resúmenes, eliminando aquellos que no traten información relevante para este trabajo.


3. Principios de la economía circular

El mundo se enfrenta a un escenario en el cual la sobreexplotación de los recursos finitos ha llevado a comprometer el aseguramiento de su disponibilidad para el desarrollo de las actividades sujetas a su uso a lo largo del tiempo y a generar impactos ambientales que, a menudo, afectan a la seguridad de la sociedad y al equilibrio del medio ambiente. El clásico esquema lineal, según el cual se desarrollan etapas sucesivas de extracción, procesamiento, utilización y eliminación de productos y materiales no es sostenible de modo indefinido, con el agravante de que, durante el proceso, se generan residuos y subproductos susceptibles de ser retornados al circuito productivo o al ciclo natural, y que, en cambio, son despreciados y destinados a su eliminación por incineración, destrucción o depósito en vertederos.

Ante esta problemática ambiental se desarrolla el concepto de economía circular, un sistema donde los materiales no se convierten en residuos ya que "se mantienen en circulación mediante procesos como el mantenimiento, la reutilización, la renovación, el reciclaje y el compostaje" [7]. (Figura 3.1)

Figura 3.1.- Esquema Economía Circular.

El primer principio de la economía circular es "eliminar los residuos y la contaminación" [8] ya que los recursos de los que dispone el planeta son finitos. Por ello surge la necesidad de buscar soluciones para dar un uso adecuado a estos residuos generados y reducir su acumulación en vertederos o incineradoras. Este principio de la economía circular es el que se va a profundizar más en este trabajo.

El segundo principio es "hacer circular productos y materiales" [9], es decir, buscar alternativas de uso para ese producto o material que ya no se puede utilizar para su aplicación principal, evitando que se convierta en desperdicio. En este proceso se pueden distinguir dos ciclos diferentes: el ciclo técnico donde se reciclan y reutilizan los productos que no se consumen al utilizarlos (por ejemplo, metales y plásticos); y el ciclo biológico donde se devuelve a la tierra los materiales biodegradables (subproductos alimenticios) mediante tratamientos como la digestión anaerobia y el compostaje. Para cumplir este principio es de vital importancia la fase de diseño en la que se debe pensar cómo debe ser ese producto para que pueda circular en el ciclo técnico o en el ciclo biológico.

El último principio es "regenerar la naturaleza" [10], como consecuencia del paso de una economía lineal a una circular se cambia la degradación de la naturaleza por su regeneración. Esto provoca la disminución de la contaminación en la industria alimentaria y el aumento de ecosistemas naturales.

Actualmente, como muestra el Informe sobre Brecha de Circularidad de 2024, no se ha avanzado lo necesario en cuanto a economía circular. Este informe que abarca el período de 2018-2023, muestra que la cantidad de materiales secundarios consumidos por la economía global ha disminuido en un 21 % en los últimos cinco años. También muestra que se han consumido más de 500 gigatoneladas, equivalente al 28% de todos los materiales consumidos por la humanidad desde el año 1900 [11].

Debido a ello, uno de los principales sectores en los que se justifica la adopción prioritaria de criterios de gestión integral basados en los principios y fundamentos de la economía circular es el de la recuperación de los residuos. Los niveles actuales de generación de residuos están estrechamente relacionados con el nivel de ingresos y

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios para la valorización de la escoria de acería) – Página 14 de 69

constituye un importante problema no solo como tal, sino también por sus repercusiones en la sociedad y en el medio ambiente.

Los residuos se generan antes, durante o como consecuencia de actividades industriales, urbanas, de servicios y domésticas. Específicamente, en la industria siderúrgica se generan, de manera inherente al proceso productivo, grandes cantidades de residuos, que requieren una gestión determinada para reducir su impacto medioambiental y hacer su fabricación compatible con el desarrollo sostenible. Debido a ello, surge la necesidad de valorizar estos residuos para su conversión en subproductos de valor en otras industrias.

4. Residuos siderúrgicos

4.1.- TIPOS DE RESIDUOS SIDERÚRGICOS

La industria siderúrgica genera una gran variedad de residuos los cuales se pueden clasificar según su estado en sólidos, líquidos o gaseosos (Figura 4.1 [12]).

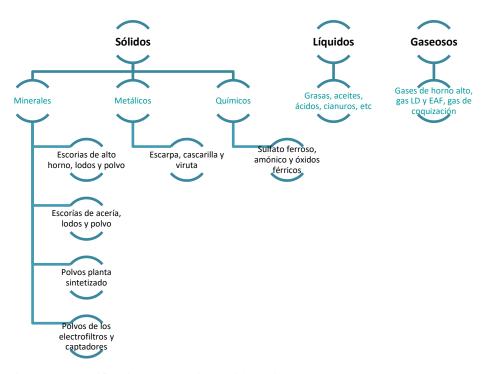


Figura 4.1.- Clasificación de los residuos siderúrgicos según su estado.

Dentro de todas estas tipologías, los residuos más importantes en cuanto a volumen de generación son las escorias, residuos sólidos inertes compuestos principalmente por sílice, óxidos de calcio/magnesio/aluminio y hierro. El acero se puede obtener a partir de dos materias primas fundamentales (Figura 4.2 [13]): mineral de hierro y chatarra. La producción de acero a partir de mineral de hierro se conoce como proceso integral, y pasa por el horno alto y el horno básico de oxígeno, donde se generan, respectivamente, la escoria BF (*Blast Furnace*) y la escoria BOF (*Basic Oxygen Furnace*) mientras que, partiendo de la chatarra, se utiliza el horno de arco eléctrico (proceso electro-siderúrgico), donde se genera la escoria EAF (*Electric Arc Furnace*).

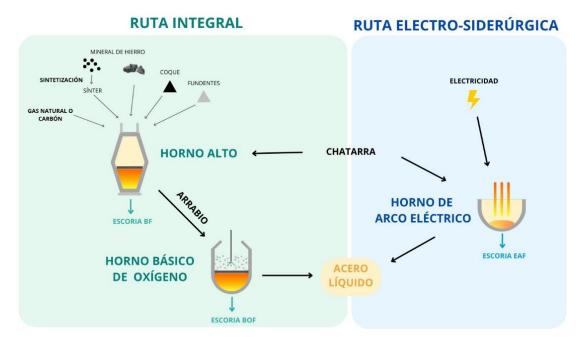


Figura 4.2.- Esquema simplificado del proceso general del acero.

Aunque todas se producen en grandes cantidades, la tasa de reutilización es muy diferente, siendo las escorias BOF las que representan un mayor problema medioambiental. Alrededor del 70% de la producción mundial de acero depende directamente de la ruta integral, ya que la disponibilidad de chatarra limita la producción de los hornos de arco eléctrico al 30% de la demanda mundial. En el proceso integral, la cantidad de escoria BOF producida oscila entre 100 y 150 kg por tonelada de acero, lo que se traduce en unos volúmenes de generación anuales muy importantes [14]. Este ratio varía de unos países a otros e incluso entre plantas.

Además de estos volúmenes de generación, las características fisicoquímicas de la escoria BOF dificultan su reutilización, convirtiendo a la escoria BOF en un grave problema y haciendo que la búsqueda de rutas para su valorización sea una línea de investigación prioritaria. Esta práctica evitaría, además, la necesidad de explotación de nuevos recursos y de los impactos directos e indirectos derivados de su explotación y supondría un claro avance para la economía circular.

4.2.- ESCORIA BOF

4.2.1.- Características fisicoquímicas

La escoria BOF es un material granular con un color gris cuanto está en estado seco y el cual presenta una textura rugosa con cierta porosidad. Sus partículas son de forma cúbica, casi no tienen presencia de lajas [15] y su densidad aparente varía entre 3- 3,6 (g/cm³) [16].

Las propiedades físicas de esta dependen del método de enfriamiento utilizado y de su composición química. Cuando se refrigera con agua da lugar a una sustancia de baja densidad y porosa, mientras que al refrigerarse en condiciones atmosféricas se genera un material más duro y denso. Al refrigerarla siguiendo el último método resulta más adecuado para su uso en la construcción al dar como resultado un material con una alta gravedad específica, resistencia a la abrasión y resistencia mecánica [17]. En la siguiente Tabla 4.1 [15], se recogen algunas de sus propiedades físicas y mecánicas fundamentales.

Ensayo	Resultado
Partículas con 2 o más caras de fractura	100%
Limpieza superficial	0,02%
Resistencia al desgaste de los áridos por medio de la máquina de Los Ángeles	14,06%
Pulimiento acelerado de los áridos	0,55%
Índice de lajas	7%
Peso específico de las partículas	$3,45 \text{ t/m}^3$
Porosidad (Aceite de parafina)	4,33%

Tabla 4.1. Características físicas de la escoria BOF.

En cuanto a su composición química, la escoria BOF se compone principalmente de calcio, silicio y hierro, y se caracteriza por una alta basicidad o alcalinidad [18]. En la Tabla 4.2 [19] se recogen los rangos entre los que suele variar su composición química. Su componente mayoritario son los óxidos de calcio, aunque su basicidad también viene dada por los óxidos de magnesio.

CaO	SiO ₂	Al ₂ O ₃	MgO	Fe ₂ O ₃	MnO	P ₂ O ₅
34-55	8-20	1-7	1-10	14-32	1-5	0,2-2,4

Tabla 4.2.- Composición química media de la escoria BOF.

El contenido en calcio se presenta en forma de cal libre, cal hidratada o cal combinada con otros compuestos. La presencia de cal libre (cal no hidratada, f-CaO), con contenido entre el 1%-15%, y de magnesia libre (f-MgO) en su composición provoca que sea inestable volumétricamente ya que al hidratarse se hincha provocando la rotura del material y una disminución del tamaño de partículas [15]. La presencia de estas fases inestables es la principal limitación para su valorización.

4.3.- APLICACIONES PRINCIPALES ESCORIA BOF

Las propiedades de la escoria BOF y sus altos volúmenes de generación la hacen muy atractiva para la industria de la construcción. Sin embargo, como se comentó en la sección anterior, su uso se ve limitado por su inestabilidad volumétrica. Existen múltiples estudios que proponen e investigan posibles aplicaciones potenciales para su valorización. A continuación, se realiza una recopilación y descripción de algunas de las principales aplicaciones propuestas como vías de reutilización.

4.3.1.- Eliminación metales pesados

Los metales pesados causan graves problemas de contaminación en el suelo, algunos, como el vanadio (V), perjudican el desarrollo de las plantas, disminuyendo la productividad del sector agrícola, y provocan daños, al entrar en la cadena alimenticia, en la salud de los seres humanos.

La escoria BOF es un residuo industrial el cual gracias a su alta alcalinidad tiene la capacidad de eliminar metales pesados de una solución [20]. Se ha estudiado la utilización de la escoria BOF para eliminar metales pesados como el vanadio (V) de soluciones acuosas. Para este proceso se recomienda el ácido oxálico de 0,2 mol/L como reactivo de lavado y un tamaño de partícula de escoria inferior 0,15 mm [21]. Así mismo en otro estudio

se muestran los beneficios de la aplicación de escorias carbonatadas en la inmovilización de metales pesados en los suelos contaminados [22]. Sin embargo, esta vía requiere someter la escoria a un proceso de carbonatación previo, lo que implica consumo de tiempo y recursos.

4.3.2.- Revestimiento vertederos y barreras reactivas permeables.

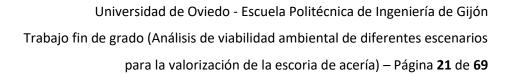
En los últimos años se han buscado numerosas alternativas (compactación suelo, enmienda con arcillas, adición de geomembranas) para retener, transportar y tratar los lixiviados, que son contaminantes líquidos con la capacidad de generar importantes problemas en el medioambiente y la salud humana. Uno de los desafíos de los revestimientos es encontrar materiales (arcillas, fibras, residuos industriales) capaces de almacenar el contaminante mientras el líquido lo atraviesa. Aunque el diseño de los mismos está enfocado en retener y eliminar los lixiviados, en algunos casos parte de estos contaminantes atraviesan la barrera y migran hacia las aguas subterráneas [23].

Otro uso que se le puede dar a la escoria es como material de construcción para barreras reactivas permeables (PRB) y como revestimiento en los vertederos, con el objetivo de retener y eliminar los lixiviados. La aplicación de la escoria ocasiona un incremento del tiempo de filtración de los iones metálicos, pudiendo aumentar a más de 180 años la vida útil del revestimiento realizando una enmienda con un 20% de escoria. Sin embargo, una vez se agota el ANC (*Acid Neutralization Capacity*) se produce una súbita disminución del pH del lixiviado provocando la liberación de altas concentraciones de contaminante. Por lo tanto, habría que implementar sistemas adicionales de recogida secundaria y métodos de control [23].

4.3.3.- Estabilización lodos depuradora

Como consecuencia de la rápida urbanización se ha incrementado de manera progresiva la cantidad de lodos en las Estaciones Depuradoras de Aguas Residuales (EDAR). Uno de los procesos más empleados para gestionar los lodos es la adición de cal, numerosas investigaciones se han enfocado en sustituir la cal por residuos o subproductos generados en la industria.

La escoria se puede utilizar como sustituto de la cal o de un agente alcalinizante para estabilizar las aguas residuales, ya que se obtuvieron resultados similares en la solubilización y composición de hidrolizado respecto a la cal. Tras realizar el análisis microbiológico se pudo clasificar la mezcla de escorias y lodos como biosólidos de Clase A [24] definido según la USEPA (*United States Environmental Protection Agency*), para cantidades mayores o iguales a 4,50 g BOF por gramo de Sólido Suspendido Total (TSS). Además, durante el tratamiento el desplazamiento de metales pesados fue escaso. Por lo tanto, en cumplimiento con la normativa vigente española [25] se puede aplicar al suelo de cultivo. Un inconveniente es que la adición de escoria BOF en dosis altas y bajas disminuye la capacidad de filtración del lodo. Por lo tanto se dificulta el proceso de deshidratación, es decir la reducción del contenido de agua en los lodos con el objetivo de obtener un material más manejable y de menor volumen [26].


4.3.4.- Producción Carbonato de Calcio Precipitado (PCC)

El PCC se utiliza para la fabricación de papel, adhesivos, pinturas, plásticos, como aditivo en alimentos y como excipiente en productos farmacéuticos.

Puede utilizarse en la producción de Carbonato de Calcio Precipitado (PCC) mediante un nuevo método *Slag2PCC* en el que se sustituye la piedra caliza por escoria BOF. Tras realizar un ACV comparativo se concluye que al utilizar escoria se disminuye la emisión de CO₂, el consumo de energía primaria y la extracción de recursos naturales como la piedra caliza. No obstante, el proceso *Slag2PCC* genera emisiones a causa de usar como disolvente una solución acuosa de sales de amonio. Además, no existen plantas de producción a gran escala ya que la tecnología *Slag2PCC* se encuentra en desarrollo. Así mismo si se tiene en cuenta el tratamiento de los residuos generados, como el reciclaje de la solución de sal de amonio del proceso de lavado, podrían verse reducidos los beneficios ambientales de este método [27].

4.3.5.- Aplicaciones marinas

La escoria siderúrgica resulta beneficiosa para el medio marino gracias a su gran superficie y a su porosidad. Por ello se puede emplear en la restauración de arrecifes de coral

ya que la escoria es muy porosa al igual que los arrecifes. También se utilizó para regenerar algas marinas por su alto contenido en hierro bivalente y como recurso nutritivo para estimular el crecimiento del fitoplancton [28].

Numerosos estudios tratan de buscar soluciones del impacto que genera sobre el pH marino el uso de escoria o de hormigón fabricado con escoria empleados para la construcción de estructuras como embarcaderos o arrecifes artificiales. A consecuencia de su carácter básico, cuando entra en contacto con el agua eleva el pH de esta. Con el fin de evitar este incremento del pH y la hidratación de la cal libre se debe someter la escoria a un tratamiento de carbonatación. El procedimiento a seguir es inyectar dióxido de carbono (CO₂) en la mezcla de escoria y hormigón, obteniendo un material insoluble y de menor porosidad con una mejora de su estabilidad [29]

Asimismo debe gestionarse adecuadamente su aplicación debido al riesgo de lixiviación de los metales pesados de la escoria, pudiendo ocasionar problemas medioambientales [30].

4.3.6.- Fabricación de cementos y hormigones

La producción de hormigones y cementos es uno de los campos más estudiados ya que tanto su composición química y características mineralógicas confieren al material propiedades muy demandadas en este sector. Algunas investigaciones analizan su utilización como sustituto del clínker o directamente como material cementante debido a sus similitudes con el cemento Portland [31]. En cuanto a la fabricación de hormigones, principalmente se analizó su uso como árido empleado en la mezcla o como material cementante. Algunos estudios aseguran que la sustitución parcial del cemento por escoria es beneficiosa para mejorar su trabajabilidad, pero disminuye notablemente su resistencia a compresión [32] .

La mayoría de los estudios concluyen que, debido a su alta expansividad volumétrica es esencial someterla previamente a un proceso de envejecimiento para evitar la formación de grietas y surcos en las estructuras [33]. Incluso en esas situaciones, la utilización de la escoria BOF después de ser envejecida durante los períodos estimados puede no conseguir los resultados óptimos ya que la estabilización de los óxidos libres podría no lograrse de

manera homogénea. Por la tanto se requiere un proceso extra de estabilización como la oxidación por aire, inmersión en agua o la carbonatación acelerada [19].

En los últimos años se han realizado numerosos estudios buscado solucionar este problema de expansión, como la granulación de aire de la escoria con el objetivo de mejorar su estabilización y rendimiento. Este proceso consiste en exponer la escoria a un fuerte ventilador de aire a una temperatura de toma de 1592 ± 40 °C. Como consecuencia de este método se reducen los costes del proceso de triturado, mejorando su viabilidad económica [34]. También se utilizó como aglutinante en cemento de Sulfoaluminato de Calcio de Belita (*Belitic Calcium Sulfoaluminate*- BSCA) la escoria BOF granulada al aire [35].

4.3.7.- Balasto ferroviario

Varios estudios han planteado la utilización de la escoria BOF como balasto empleado en vías férreas. Su forma angular y alta resistencia a la abrasión sujetan firmemente las travieses y evitan el desplazamiento de las vías en las curvas. Además, su alta gravedad específica puede ser beneficiosa para proporcionar una mayor resistencia lateral [36].

Sin embargo, también puede contribuir a generar tensiones entre las diferentes capas, afectando a la estabilidad estructural. Por ello, su principal limitación es, de nuevo, su inestabilidad volumétrica ante los posibles problemas estructurales que podría ocasionar en las vías, así como su alto contenido en hierro y alta conductividad eléctrica, que puede ocasionar interferencias con el sistema de señales [37].

4.3.8.- Fabricación de contrapesos

Los contrapesos industriales de alta densidad que se emplean en diferentes industrias como la de construcción (grúas y maquinaria), transporte (ferrocarril), electrodomésticos, puertas basculantes y ascensores. Se construyen a partir de una mezcla de cemento y materiales pesados como los residuos de hornos altos o cascarillas de laminación [38]

Gracias a la elevada densidad y resistencia de la escoria es un buen material para la fabricación de contrapesos. Pero para evitar la formación de grietas al entrar en contacto con al ambiente húmedo se debe tratar mediante un proceso de carbonatación o aislar con aditivos (polietileno) [29].

4.3.9.- Carreteras

Las características físicas y mecánicas de la escoria BOF son similares a las de los áridos naturales empleadas en la construcción de carreteras. Debido a ello, varios investigadores han analizado su posible utilización en este sector. Al igual que pasaba en la industria cementera, los problemas de expansión volumétrica son un aspecto especialmente relevante en el sector de la construcción de carreteras. Por ello, la utilización de este material en las capas más profundas de los firmes está muy limitado, incluso con tratamiento previo, por la posible aparición de grietas derivadas de los fenómenos de expansión [39].

Sin embargo, cada vez son más estudios los que proponen su utilización en las capas más superficiales de las carreteras, concluyendo que incluso puede mejorar la resistencia al deslizamiento y resistencia a rotura del firme [40].

También se ha estudiado para la eliminación de metales pesados (zinc y cobre) que proceden de la atmósfera o de la circulación de los vehículos y posteriormente se infiltran al suelo por la escorrentía de la lluvia [41]. Otro estudio muestra que la aplicación de la escoria BOF ahorra 967 toneladas de áridos naturales en la construcción de una carretera de carril único y longitud de 1 km. [42].

En otra investigación [43] se realizaron pruebas para analizar el impacto de los metales pesados lixiviados de la escoria en las carreteras. Los resultados mostraron que casi todas las concentraciones evaluadas no exceden la Norma Nacional para la Descarga de Aguas Residuales Industriales (QCVN 40-2011) de Vietnam.

Algunos de los estudios realizados aseguran que el uso de escoria como árido en carreteras tiene efectos perjudiciales provocados por el incremento del consumo de asfalto, a causa de la alta porosidad de la escoria, y el incremento de la masa de trasporte,

consecuencia de la alta densidad. Pero también implica numerosos beneficios como la disminución de la extracción de áridos naturales y se evita su acumulación en vertederos [44].

4.3.10.- Remediación ambiental

La degradación del suelo es un problema ambiental cuyas causas son la erosión, acidificación, deforestación entre otras. La acidificación del suelo (pH< 5,5) afecta a aproximadamente al 50% de la tierra cultivable, aunque este valor va incrementando de manera gradual con el tiempo [45].

La escoria BOF se puede aplicar en la remediación de tierras degradadas por el fenómeno de acidificación como material de encalado, sustituyendo a la piedra caliza y como fuente de nutrientes de enmienda. Diferentes estudios sobre la aplicación de la escoria en la agricultura demuestran que conlleva numerosos beneficios sobre las propiedades químicas del suelo. Algunos de estos beneficios son el aumento del pH, gracias a la presencia de CaO en su composición química, y el aumento del contenido de los nutrientes (magnesio, fósforo, silicio y calcio) en la planta favoreciendo su crecimiento y como consecuencia incrementando la productividad de los campos de cultivo [46].

Se ha empleado en diferentes tipos de cultivo como en el del arroz, como fertilizante en suelos deficientes en silicio (Si) [47]; en el cultivo de hierba marandú como fertilizante nitrogenado donde se incrementó la absorción de silicio y la generación de materia seca [48]. También se ha empleado en la plantación de maíz y soja, mejorando de manera más eficaz el rendimiento del grano del maíz en comparación con la caliza [49].

Además se ha comprobado su viabilidad económica y financiera mediante un análisis LCC (*Life Cycle Cost*) en su uso en la agricultura tanto si se almacena la escoria de manera interna o externa en la planta de fabricación de acero [50].

Se debe de vigilar los niveles de metales pesados en los lixiviados presentes en el suelo antes y después de su aplicación con el fin de comprobar que su uso en la agricultura no ocasiona daños en el medioambiente [51].

4.3.11.- Abrasivos

Una aplicación técnicamente viable para la escoria BOF es su uso como agente abrasivo para chorreado superficial, como sustituto de la arena de sílice. Tiene un rendimiento y unas características similares a la escoria de cobre, uno de los abrasivos más utilizados, y no se requiere de ninguna adaptación o equipo especial para su utilización [52].

Es necesario realizar un proceso previo de filtrado del polvo de la escoria y un control de la curva granulométrica, intentando aproximarlo a un tamaño de 2 mm, para disminuir la generación excesiva de polvo durante su aplicación. También se requiere una disminución de la conductividad (alta concentración de contaminantes solubles en agua), la cual puede ser debida a la presencia de la cal libre en su composición [53].

Como conclusión de este apartado 4.3.- se puede apreciar que el reciclado de la escoria BOF ha sido un tema ampliamente estudiado en los últimos años a nivel técnico. A pesar de ello, son menos la cantidad de estudios que realicen también un análisis de los beneficios medioambientales que implicaría la reutilización de este material, y en aquellos en los que se realiza, se centran en una única aplicación.

Por otra parte, muchas de las aplicaciones planteadas requieren de un tratamiento de estabilización previo. En general, la aplicación de estos tratamientos obtiene resultados satisfactorios reduciendo el porcentaje de cal libre del material y, por lo tanto, minimizando el principal causante de su inestabilidad volumétrica, fomentando su utilización en aplicaciones que requieran un confinamiento estructural. Sin embargo, o bien llevan implícitos altos costes de ejecución y operación al necesitar la construcción de infraestructuras específicas, o requieren el tratamiento previo del material para obtener resultados satisfactorios, lo que también lleva asociado importantes costes ambientales que no suelen tenerse en cuenta, además de costes económicos.

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios

para la valorización de la escoria de acería) – Página 26 de 69

Es necesario, por tanto, centrarse en desarrollar soluciones en aplicaciones no estructurales o donde la inestabilidad volumétrica de la escoria no sea un problema para su valorización y representen una opción real a un residuo del que se generan miles de toneladas al año en todo el mundo. Además, dentro de esas soluciones, es preciso incidir en aquellos casos que pueden realmente ayudar a resolver el problema. Dados los enormes volúmenes con los que se trata, es necesario que las aplicaciones finales cubran porcentajes significativos de material.

Debido a ello, el presente Trabajo Fin de Grado se ha centrado en tres de las aplicaciones antes analizadas que cumplen con esos requisitos: **carreteras, remediación ambiental y abrasivos**. Estas no tienen problema de expansión y por lo tanto la escoria se puede usar al natural sin necesidad de tratamiento, mejorando la viabilidad económica para su valorización.

5. Análisis de Ciclo de Vida

El Análisis de Ciclo de Vida (ACV o LCA por sus siglas en inglés, *Life Cycle Assessment*) es una herramienta verificada, definida por la Organización Internacional de Normalización para evaluar el comportamiento ambiental de un producto, proceso o servicio durante todas las fases de su ciclo de vida. "El ACV trata los aspectos e impactos ambientales potenciales a lo largo de todo el ciclo de vida de un producto desde la adquisición de la materia prima, pasando por la producción, uso, tratamiento final, reciclado, hasta su disposición final (de la cuna a la tumba)." (ISO 14040:2006 [54] e ISO 14044:2006 [55]).

La evaluación ambiental realizada bajo ACV cubre una amplia gama de impactos ambientales relacionados con las emisiones (p.ej., cambio climático, acidificación del medio, ecotoxicidad, etc.) o intervenciones físicas (p.ej., uso de la tierra, extracción y uso de agua, ruido, etc.) e impactos sobre la pérdida de recursos abióticos y bióticos. Es por ello, que resulta especialmente útil como herramienta de comparación de las diferentes aplicaciones para dar salida a la escoria BOF. Según la norma antes mencionada, el ACV consta de las siguientes fases (ver Figura 5.1):

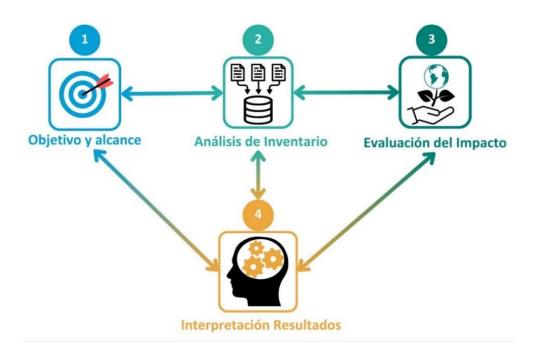


Figura 5.1. Esquema metodología ACV.

La primera etapa consiste en definir el *Objetivo y el Alcance*, proporcionando una descripción detallada del proyecto y del producto. En el apartado del objetivo, es importante resaltar los resultados esperados y los estándares de calidad requeridos para los datos. Y en cuanto al alcance, es necesario definir la profundidad del estudio y los límites del sistema, incluyendo la escala de investigación, ya sea en un laboratorio, planta piloto o nivel industrial. También se debe proporcionar una descripción detallada de la unidad funcional, sus funciones y los diagramas de proceso para identificar las entradas y salidas del sistema de manera efectiva.

La segunda etapa es el *Análisis de Inventario*, donde se identifican los procesos incluidos en el sistema analizado y se recopilan datos relativos a las entradas (recursos, materiales o productos) y a las salidas (productos, emisiones o residuos) en cada etapa del ciclo de vida.

La *Evaluación del Impacto* es la siguiente fase y consiste en traducir los datos recopilados en el inventario en contribuciones a los impactos medioambientales cubiertos por el ACV. Para ello, hay que definir las categorías de impacto que son objeto de estudio y asignar los resultados del inventario (indicadores de categoría) y calcular los resultados del indicador (convertir los resultados del ACV a la unidad común del indicador de categoría). Puede centrarse en indicadores elegidos a lo largo de la vía de impacto (punto medio o *midpoint*) o puede intentar modelarlos en las áreas de protección (punto final o *endpoint*).

El método de evaluación del impacto seleccionado para este estudio es *ReCiPe* cuyo objetivo es seleccionar un número limitado de puntuaciones de indicadores. Existen dos niveles (Tabla 5.1):

- 18 indicadores de punto medio
- 3 indicadores de punto final

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios para la valorización de la escoria de acería) – Página 29 de 69

Indicador	Grupo de categorías de impacto	Categoría de impacto	Unidad
Punto	Acidificación	Acidificación terrestre	kg SO ₂ eq
medio	Cambio climático	Cambio climático	kg CO ₂ eq
	Agotamiento de los	Agotamiento de los combustibles	
	recursos abióticos	fósiles	kg oil eq
		Agotamiento del agua	m^3
		Agotamiento del metal	kg Fe eq
	Ecotoxicidad	Ecotoxicidad del agua dulce	kg 1,4-DB eq
		Ecotoxicidad marina	kg 1,4-DB eq
		Ecotoxicidad terrestre	kg 1,4-DB eq
	Eutrofización	Eutrofización de agua dulce	kg P eq
		Eutrofización marina	kg N eq
	Toxicidad en	Toxicidad en humanos	
	humanos		kg 1,4-DB eq
	Radiación ionizante	Radiación ionizante	kBq U235 eq
	Uso de la tierra	Ocupación de tierras agrícolas	m ² a
		Ocupación de suelo urbano	m^2a
		Transformación natural de la tierra	m^2
	Agotamiento de la	Agotamiento del ozono	
	capa de ozono		kg CFC-11 eq
	Partículas en	Formación de partículas en	
	suspensión	suspensión	kg PM10 eq
	Oxidación	Formación de oxidantes fotoquímicos	
	fotoquímica		kg NMVOC
Punto		Salud humana	DALY
final		Ecosistemas	Species.year
		Recursos	\$

Tabla 5.1.- Resumen de las categorías de impacto cubiertas por la metodología *ReCiPe*.

Cada uno de estos niveles se clasifica en tres factores culturales diferentes, individualista (a corto plazo, la tecnología podrá evitar muchos problemas), jerárquico (modelo de consenso) e igualitario (a largo plazo, basado en la precaución).

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios

para la valorización de la escoria de acería) - Página 30 de 69

Mientras que los métodos de punto final siguen el proceso hasta que causa daños, los métodos de punto medio miden un efecto antes de que se produzcan los daños. Aunque los métodos de punto medio tienen menos incertidumbre, sus resultados pueden ser difíciles de interpretar. Convertir los impactos de punto medio en finales requiere pasos adicionales, lo que introduce más incertidumbre, pero hace que los resultados sean más accesibles para los no expertos.

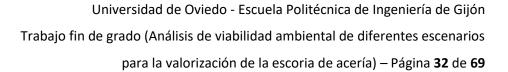
Por último, estos resultados se interpretan de acuerdo con la definición de objetivos y el alcance cumpliendo la fase de *Interpretación*.

6. Objeto y alcance del estudio

En este apartado se aborda el alcance general del estudio siguiendo las pautas establecidas por la norma ISO 14040, y se proporciona una visión general de los objetivos y el ámbito de aplicación que incluye la descripción del sistema y escenario, la elección de la unidad funcional, así como la definición de los límites del estudio.

6.1.- OBJETIVO Y ALCANCE

El objetivo principal del presente trabajo es realizar una comparativa entre diferentes alternativas de aplicación de la escoria tipo BOF, con la finalidad de encontrar la opción con menor impacto ambiental para valorizar esta escoria.


El Análisis de Ciclo de Vida realizado para este estudio es de tipo comparativo, pues evalúa las ventajas medioambientales derivadas de remplazar la escoria en las tres aplicaciones planteadas. El alcance es determinar cuál de las aplicaciones para la valorización de la escoria BOF es la más respetuosa con el medio ambiente, en términos de emisiones de carbono, combustible y consumo de energía.

6.2.- UNIDAD FUNCIONAL

Para asegurar una correcta representación de los datos y debido a que las cantidades utilizadas en los escenarios planteados serían significativas, la unidad funcional seleccionada ha sida "la reutilización de 1000 kg de escoria BOF".

6.3.- DESCRIPCIÓN DEL SISTEMA

El punto de partida es una industria siderúrgica situada en el principado de Asturias. La viabilidad técnica de la utilización de la escoria BOF en las diferentes aplicaciones

planteadas ya ha sido ampliamente corroborada tal y como se muestra en el análisis del estado del arte del presente documento. Concretamente, para la realización de este estudio se tomarán como referencias técnicas de uso tres documentos que nacen de ensayos experimentales realizados con escoria BOF recogida en el Principado de Asturias.

En este caso, el enfoque abarca desde la "cuna", donde se extraen las materias primas, se ponen en producción y se utilizan, hasta la "puerta", sin tener en cuenta el mantenimiento y la etapa de fin de vida de cada una de las aplicaciones planteadas. Los límites del sistema incluyen el tratamiento de la escoria (sólo si es necesario) en las instalaciones de producción para adaptar sus características a su aplicación final, el transporte al sitio de utilización y su uso final.

A continuación, se realiza una descripción de los diferentes escenarios planteados, detallando los requisitos técnicos validados por la literatura para el empleo de utilización de la escoria BOF en cada uno de ellos.

6.3.1.- Escenario 1: Escoria BOF como abrasivo para granallado superficial

El chorreado superficial con abrasivos es un método muy extendido para la limpieza de superficies de diferentes materiales y estructuras civiles cuyo objetivo principal es preparar la superficie para protegerla contra la corrosión, la degradación, la fatiga y el desgaste [56]. En la actualidad, esta operación se realiza a menudo con abrasivos tradicionales, como arena de sílice o granalla de acero, lo que requiere producción de material y consumo de recursos. Sin embargo, la escoria BOF podría mejorar la sostenibilidad de las operaciones reemplazando a estas materias primas

La preparación de estructuras metálicas es una de las principales tareas del mercado siendo de vital importancia en muchas aplicaciones de ingeniería. La utilización de la escoria BOF en este campo ha sido validad a través de experimentos en laboratorio y pruebas piloto [52] en las que se concluyó que la utilización de escoria como material abrasivo podía llegar a conseguir un perfil de rugosidad medio (sectores 2-3) según la norma ISO 8503-1 [57] tras la limpieza de las chapas de acero oxidadas. Para cumplir con los requisitos técnicos fue necesario triturar la escoria hasta una granulometría de 2-0,2mm.

Este escenario consta de tres fases: tratamiento, transporte y uso (Figura 6.1). En la fase de tratamiento primero se somete la escoria (0-20mm) a un proceso de molienda para obtener un tamaño de < 2mm, con el consiguiente consumo eléctrico y de aceite lubricante. Luego se transporta a la zona de cribado mediante una cinta transportadora, lo que conlleva un gasto eléctrico. En la zona de cribado se separa la escoria con la granulometría necesaria para su uso como abrasivo (2-0,2mm), generando un 10% de residuos de escoria (<0,2mm). Finalmente, la escoria cribada llega a el área de secado, mediante una cinta transportadora, dónde se obtiene escoria con un 4% de humedad con un consumo eléctrico y la emisión del agua. La escoria tratada se transporta mediante un camión, el cual utiliza gasoil y produce contaminación atmosférica, a el lugar dónde se va a utilizar. Su aplicación como abrasivo requiere de electricidad y genera diferentes emisiones.

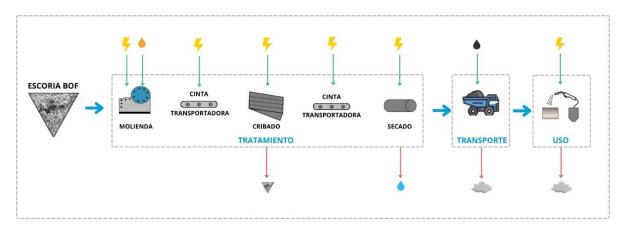


Figura 6.1.- Escenario 1: Escoria BOF como abrasivo para granallado superficial.

6.3.2.- Escenario 2: Escoria BOF como árido para la construcción de carreteras.

Las mezclas asfálticas se dividen en dos tipologías, calientes y frías, en función de su fabricación y aplicación. Las mezclas en caliente necesitan un calentamiento previo a su aplicación para reducir la viscosidad y son las más demandadas al poder alcanzar los mejores valores estructurales. Se trata de una combinación de áridos gruesos (>2 mm) y finos (2/0,063 mm), filler (<0,063 mm) y ligante (UNE-EN 933-2). En concreto, las mezclas de tipo hormigón bituminoso (AC, por sus siglas en inglés *Asphalt Concrete*) utilizan betún como aglutinante (UNE-EN 13108-1). Los áridos actúan como esqueleto estructural del pavimento, mientras que el ligante hidrocarbonado aglutina y recubre homogéneamente todos los materiales. Este tipo de mezcla es la más utilizada en carreteras de alta capacidad y

la más demandada actualmente en el mercado. Para construir un solo kilómetro de carretera nueva se requiere el consumo de 30.000 toneladas de áridos [58]. No obstante, la gran cantidad de escoria BOF generada en la industria siderúrgica puede satisfacer las necesidades de áridos para la construcción de carreteras. En el año 2022, la producción total en Europa de asfalto en caliente y mezcla tibia (HMA y WMA) fue de 279,4 Mt [59].

Como se ha comprobado en el apartado 4.3.9.-, varios autores y estudios han validado la utilización de la escoria BOF como árido grueso empleado en la construcción de carreteras, aunque no muchos emplean la escoria sin una previa estabilización de la cal libre. Por ese motivo, el presente trabajo se ha basado en este estudio en el que no se requiere este tratamiento [60]. El porcentaje de sustitución de la escoria en el estudio fue del 15% en peso de los áridos, sustituyendo la fracción gruesa con una granulometría 10-20mm. El resto de los áridos fueron de origen calizo y se utilizó un betún convencional con un grado de penetración 50/70 definiendo una mezcla AC-Base de tipo AC16 surf 50/70D para una carretera diseñada para vehículos pequeños y medianos (T3-T4) (200-250 vehículos pesados/día).

El escenario 2 consta de las siguientes fases: tratamiento, transporte y uso (Figura 6.2). Al igual que en el escenario 1, se requiere de un proceso de cribado de la escoria (0-20mm) para conseguir la granulometría exigida para este escenario (10-20mm), descartando un 50% de residuos de escoria (0-10mm). Posteriormente se transporta mediante un camión a la planta de mezclado. Para la remodelación de la carretera se requiere de un proceso previo de pavimentación, cuya maquinaria consume gasoil y genera emisiones. La mezcla asfáltica se conforma a partir de la combinación de áridos y betún en una mezcladora, que necesita de electricidad, aceite combustible y gasoil, y emite una serie de contaminantes a la atmósfera. Luego se distribuye la mezcla asfáltica a la largo de la vía por medio de un camión volquete. Después viene la fase de pavimentación y de manera consecutiva la compactación, el equipo utilizado gasta combustible y genera emisiones al ambiente.

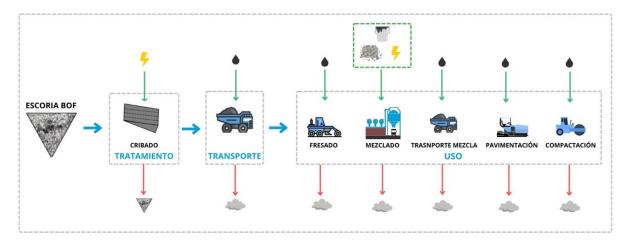


Figura 6.2.- Escenario 2: Escoria BOF como árido para la construcción de carreteras

6.3.3.- Escenario 3: Escoria BOF como agente de encalado.

El encalado es una técnica de remediación del suelo degradado por el proceso químico de acidificación. La acidificación es una disminución del pH del suelo causado por factores naturales como la lluvia y la meteorización natural de las rocas. También pueden ser causados por factores humanos como el uso excesivo de fertilizantes y por las deposiciones ácidas de origen industrial de sulfato y nitrato atmosférico. Actualmente se suelen llevar a cabo diferentes labores de encalado y mejora de terreno cuyo objetivo es obtener un suelo con un pH adecuado para el crecimiento de la vegetación y dónde los metales pesados sean insolubles y no se absorban por las plantas ni migren por lixiviación [61] cumpliendo con las recomendaciones para oligoelementos para la calidad del agua de la FAO [62] y los límites para metales pesados en lixiviados de vertederos establecidos por la UE [63].

En el proceso de encalado se eleva el pH haciendo uso de la cal natural obtenido del recurso natural piedra caliza, el uso de la escoria BOF como agente de encalado reduciría la extracción de cal y otros materiales encalantes [51]. En el estudio de partida para este análisis se utilizó una dosificación 980 gm², teniendo en cuenta el contenido en CaO de la escoria BOF y no se obtuvieron mejores resultados con una granulometría de material específica por lo que se considera apropiado un todo-uno sin necesidad de cribado previo.

Este escenario no requiere de tratamiento de la escoria y por tanto sólo consta de dos fases: transporte y uso (Figura 6.3). La escoria (0-50mm) se transporta mediante un camión al campo dónde se va a realizar el proceso de encalado. Para su utilización se requiere de

una fase previa de preparación del terreno para finalmente aplicar la escoria, el equipamiento empleado consume gasoil y emite gases contaminantes.

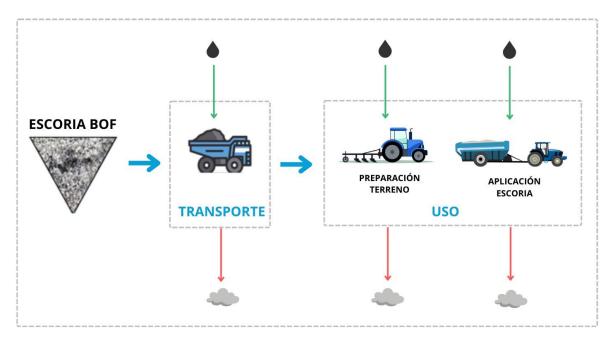


Figura 6.3.- Escenario 3: Escoria BOF como agente de encalado.

6.4.- LIMITACIONES E HIPÓTESIS

Los procesos se han definido asegurando que los datos tengan una antigüedad inferior a 10 años. Como limitación e hipótesis de partida para la realización de este trabajo no se consideran etapas posteriores al uso final de cada aplicación.

Se supone que la escoria se somete a un tratamiento de enfriamiento, separación magnética y clasificación. Estos procesos se llevan a cabo de forma independiente en la planta siderúrgica y, por lo tanto, no se consideran dentro del alcance del estudio. La siderurgia generadora de la escoria separa la escoria en fracciones gruesas y finas (0-20mm y 20-50mm).

Además, se excluirán aquellos elementos con influencias muy bajas en el impacto ambiental. Los criterios de corte de este estudio permiten excluir los datos sobre materiales, energía y emisiones con los siguientes criterios:

- Masa. Si el proceso es inferior al 3% de la masa total gestionada en el modelo, puede excluirse, siempre que el impacto ambiental no sea relevante.
- Energía. Si el proceso representa menos del 3% de la energía primaria total del inventario, puede excluirse, siempre que el impacto ambiental no sea relevante.
- Relevancia medioambiental. Si un proceso concreto que cumple las condiciones anteriores, debido a las características especiales del proceso de producción de materiales o energía tiene un impacto ambiental en alguna de las categorías superior al 5%, este proceso no puede ser excluido.

El tratamiento de los datos realizado en el Análisis de Inventario se ha centrado en garantizar que la suma de la relevancia medioambiental de todos los procesos excluidos sea inferior al 5%. Manteniendo estos criterios de corte, el riesgo de que los procesos omitidos puedan influir en los resultados finales es insignificante.

Se utilizó la hipótesis de carga cero, por la que se excluyeron los impactos ambientales de las etapas del ciclo de vida aguas arriba antes del tratamiento específico requerido para el uso de la escoria para alinear estas etapas con la metodología común de ACV orientada a la gestión de residuos.

Los resultados tendrán un carácter no generalista, ya que están directamente condicionados por las hipótesis y las limitaciones planteadas.

6.5.- SOFTWARE Y BASE DE DATOS

Se va a emplear la base de datos de *Ecoinvent* [64], la cual proporciona información detallada sobre los impactos ambientales asociados con la producción y el uso de diversos productos y servicios. Esta base de datos contiene una amplia gama de inventarios de ciclo de vida que cubren una gran variedad de sectores industriales, incluyendo agricultura, energía, transporte, construcción y textiles, entre otros. Cada inventario proporciona datos detallados sobre las entradas de recursos y energía, las emisiones al aire y al agua, los residuos generados y otros impactos ambientales.

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios para la valorización de la escoria de acería) – Página 38 de 69

Para la evaluación del inventario de ciclo de vida se va a emplear el software *SimaPro* el cual se utiliza en la industria y la investigación para analizar el impacto ambiental de productos y procesos. *SimaPro* [65] permite a los usuarios modelar y evaluar el ciclo de vida completo de un producto o proceso, desde la extracción de las materias primas hasta su disposición final, teniendo en cuenta factores como el consumo de capital natural, las emisiones de gases de efecto invernadero y la generación de residuos.

7. Inventario del Ciclo de Vida (ICV)

El análisis del inventario es una fase crítica de la evaluación ambiental, ya que los resultados obtenidos están directamente relacionados con la calidad de los datos utilizados en el ACV. A través de las investigaciones de tres aplicaciones en diferentes sectores, el estudio recopiló un inventario holístico con información obtenida de diferentes bases de datos y de la literatura científica, y luego se realizó un análisis comparativo de los impactos ambientales con ACV.

El ICV compromete los requisitos de material y energía para reutilizar 1 tonelada de escoria BOF desde la cuna hasta la puerta, que es la unidad funcional utilizada para comparar los comportamientos ambientales de los escenarios analizados.

7.1.- TRATAMIENTO

El objetivo de esta etapa es adaptar la escoria a los requerimientos del proceso. El insumo para este proceso es de 1.000 kg de escorias BOF en las condiciones en las que se almacenan en el patio de escorias. Los tratamientos requeridos para la utilización de la escoria BOF varían en función del escenario y se detallan a continuación.

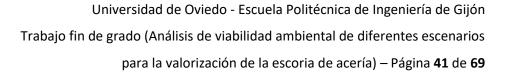
7.1.1.- Molienda

La molienda de escoria BOF es muy exigente en energía debido a la abrasividad del material. Este proceso se requiere para la fase de tratamiento del **escenario 1**. La introducción de la molienda es claramente un proceso con un fuerte impacto en la sostenibilidad de cualquier solución de recuperación de materiales. Según la literatura, cuando es necesario moler la escoria hasta obtener un polvo muy fino, el consumo de energía de la molienda de escoria BOF se estima en 3-2 veces mayor que el de la escoria BF [66]. La fase FeO y el hierro metálico en la escoria BOF la hacen más resistente.

El consumo de energía en el proceso de trituración se estimó utilizando la ecuación de Bond (7.1) [67]:

$$E = W_i \left(\frac{10}{\sqrt{W_{F80}}} - \frac{10}{\sqrt{W_{P80}}} \right) \tag{7.1}$$

donde E es el consumo de energía (kWh/t), Wi es el índice de trabajo de unión de la escoria, WP80 se refiere al tamaño (80%) de la muestra triturada pasada (2.000 μ m) y W_{F80} se refiere al tamaño (80%) de la muestra de alimento pasada (20.000 μ m). El Índice de Trabajo de Bond representa la energía requerida para reducir el tamaño de grano de infinito a 100 μ m y fue calculado experimentalmente para la escoria BOF por Kodama [68]. El resultado fue Wi= 30,40 kWh/t-escoria obtenida de la prueba de molienda del molino de bolas de una muestra de escoria.


La necesidad de consumo de aceite lubricante para el proceso de molienda se estima utilizando el inventario de trituración de roca de *Ecoinvent*, con un valor de 4,50E-4 kg cada 1.000 kg molidos.

7.1.2.- Cribado

Se realizó una estimación aproximada del consumo de energía para el proceso de cribado de acuerdo con la metodología propuesta por Quattrone et al. [69]. La ecuación (7.2) calcula el consumo de energía por tonelada métrica de material procesado:

$$E = \left(\frac{P}{n}\right) \cdot C \tag{7.2}$$

donde E es la energía eléctrica de la máquina (kWh); P es la potencia del motor instalado (Kw); η es la eficiencia y C es el número de horas de trabajo de la máquina (h). El equipo utilizado para el cálculo fue una criba vibratoria con una potencia de salida de 10 kW, una capacidad de producción de 50 t/h y una eficiencia de 0,847. Los resultados están en consonancia con Grbeš [70] que modela los procesos involucrados en la producción de

arena de sílice con datos primarios y considera una criba vibratoria de 11 kW con una capacidad de producción de 53 t/h y [71].

En el caso del uso de escoria como abrasivo del **escenario 1**, se requieren tamaños de agregado entre 2-0,2mm. Como el material se muele por debajo de 2 mm, el 90% del material se encuentra en este rango.

En el **escenario 2**, se utiliza la granulometría 0-20 mm generada en la siderurgia y se necesita un tamaño de 10-20mm. Por lo tanto, en el proceso de tamizado se supone que se producen unas pérdidas del 50% de la escoria utilizada.

7.1.3.- Cinta transportadora

El transporte de áridos desde la molienda hasta el cribado, y desde el cribado hasta el proceso de secado, el cual tiene lugar en el **escenario 1**, se considera mediante una cinta transportadora de 7,5 kW con una capacidad de producción de 50 t/h y una eficiencia de 0,9. El consumo de energía se calculó mediante la ecuación (3). El análisis de los datos primarios de Grbeš vuelve a estar alineados con los consumos declarados.

7.1.4.- Secado

El secado es un proceso que consume mucha energía, ya que representa entre el 10% y el 20% del uso total de energía industrial en la mayoría de los países desarrollados [72]. La razón principal de esto es la necesidad de suministrar calor latente de evaporación para eliminar el agua. En el **escenario 1** donde se propone el uso de escoria como abrasivo, el proceso de secado es uno de los más importantes. La normativa no permite un contenido de humedad superior al 0,2%. Basado en las pruebas realizadas [52], se concluye que para garantizar la viabilidad técnica, las escorias deben tener un contenido inferior al 5%. Se supone que el proceso de secado se lleva a cabo en un secador rotativo de calentamiento directo (30 kW). Según la información de los fabricantes de secadores de arena, un secador rotativo de calentamiento directo sin recuperación de calor consume, en promedio, 1000 kWh para eliminar 1 tonelada de agua de la arena [73].

En este caso, el consumo de energía se estimó mediante la ecuación (3). La máquina considerada tiene una capacidad de 15 t/h accionada por un motor eléctrico con una potencia de 18,5 kW. En términos de eficiencia existen muchas discrepancias en la literatura [74], [75], en este caso se consideró una eficiencia de 0,5.

7.2.- TRANSPORTE

Se va a utilizar para los tres escenarios el inventario del camión definido como "transport, freight, lorry 3.5-7.5 metric ton, EURO4", en la base de datos Ecoinvent (v.3.9.1). En el **escenario 2** se va a suponer el mismo camión tanto para transportar la escoria como para transportar la mezcla asfáltica.

7.3.- USO

A continuación, se detallan las fases de la utilización de la escoria para cada uno de los escenarios.

7.3.1.- Escenario 1

Para limpiar 1 m² de chapa de acero hasta alcanzar un perfil medio de rugosidad se requirieren 24,92 kg de escoria BOF [52]. Se va a emplear para el proceso de *sandblasting* un arenero con las siguientes características Tabla 7.1 [76] .

Capacidad de carga	30 L
Presión mínima de aire en la boquilla	6 bar
Diámetro de la manguera	25,4 mm
Paso de la boquilla Venturi	9,5 mm

Tabla 7.1.- Características principales arenero.

La eficacia de limpieza se va a suponer similar a la de la escoria de cobre, ya que poseen propiedades similares, siendo esta de un valor de 12 m²/h para un chorreado de una

chapa de acero de grado B (superficie con oxidación residual, donde la calamina empieza a desprenderse), calidad de granallado SA 2 ½ (limpieza a fondo) y una boquilla Venturi de largo 10 mm [77].

Para el cálculo de la electricidad (kWh) del arenero se necesita conocer la potencia del compresor (kW). Para ello se van a emplear los datos de la ficha técnica de la boquilla *Clemlite Silicon Carbide Lined Rubbler Jacketed—Long Venturi* [78] conociendo la presión y el diámetro de la boquilla. Como no hay datos exactos para la presión de 6 bar equivalente a 87 PSI (*Pound perSquare Inch*) en la Tabla 7.2, se va a realizar una interpolación obteniendo un caudal de aire de 169,4 CFM (*Cubic Feet per Minute*) igual a 4796,87 L/min y una potencia de 38,1 HP (*Horse Power*) equivalente a 28,41 kW.

Presión	Caudal de aire	Potencia
(PSI)	(CFM)	(HP)
80	161	36
87	169,4	38,1
90	173	39

Tabla 7.2.- Caudal de aire y potencia del compresor para una boquilla de 3/8" (9,5 mm).

En cuanto a las emisiones generadas en el proceso de chorreado de escoria BOF al no disponer de estudios que especifiquen la materia particulada formada y el polvo de escoria, no se va a incluir en el inventario.

7.3.2.- Escenario 2

Este escenario va a tomar como referencia el siguiente estudio (Tabla 7.3 [60]), para determinar las cantidades de escoria, áridos y betún necesarias para la elaboración de la mezcla asfáltica.

Mezcla asfáltica	%
Árido grueso natural (caliza, basalto, silíceo)	80,51
Betún	5,27
Escoria BOF	14,22

Tabla 7.3.- Proporciones diferentes componentes de la mezcla asfáltica.

Para la fase de mezclado en la que se obtiene la mezcla asfáltica se va a suponer un consumo de la máquina de mezclado de 23 kWh/ton escoria, basándose en el dato de que para 1 kg de mezcla se necesitan 3,28E-3 kWh [79]. Como áridos de la mezcla se consideraron los siguientes elementos de *Ecoinvent:* basalto (*Basalt {GLO}*), piedra caliza (*limestone, crushed, washed*), arena de sílice (*Silica sand {GLO}*) y betún (*Bitumen, at refinery/kg/US*).

El cálculo del Consumo de Energía (kWh) de la maquinaria empleada en la remodelación de una carretera (fresadora, pavimentadora y rodillo) se realiza mediante la ecuación (7.3) [79].

$$CE = \frac{P}{RF} \times \frac{L}{v} \times \frac{W}{EW} \times N \tag{7.3}$$

La longitud de la carretera (L, en km) y la anchura (W, en m) en este caso como se va tomar la unidad funcional de 1 m² son de 1 m cada una, el resto de los datos utilizados se encuentran definidos en la Tabla 7.4 [79].

Máquina	Potencia P (kW)	Velocidad V (km/h)	Anchura útil EW (m)	Número de pasadas N	Factor de reducción RF
Fresadora (MARINI)	179	1,68	1,31	1	1,00
Pavimentadora (VOGUËLE)	129	1,50	3,65	1	1,00
RODILLO NEUMÁTICO (BOMAG)	75	6,00	1,98	1	0,60

Tabla 7.4. Datos maquinaria construcción carreteras

Se empleó como inventario base del consumo de combustible y las emisiones a la atmósfera la "Guía de inventario de emisiones de contaminantes atmosféricos de la

EMEP/EMA" [80] . Los datos del combustible y las emisiones para una tonelada de escoria se muestran en las Tabla 7.5 y Tabla 7.6 [79].

	Fresadora	Pavimentadora	Rodillo
Diesel, low-sulfur	1,09	0,323	0,052
(kg/ton escoria)	1,09	0,323	0,032

Tabla 7.5. Consumo combustible maquinaria construcción carreteras

	Fresadora	Pavimentadora	Rodillo
	(kg/ton escoria)	(kg/ton escoria)	(kg/ton escoria)
CO	2,15E-02	6,22E-03	9,99E-04
NOx	3,95E-02	1,14E-02	1,84E-03
PM	1,29E-04	4,97E-05	8,00E-06
$PM_{2,5}$	2,19E-03	8,21E-04	1,32E-04
CH_4	2,15E-04	6,22E-05	9,99E-06
NMVOC	5,58E-03	1,62E-03	2,60E-04
N_2O	1,50E-04	4,35E-05	7,00E-06
NH_3	8,58E-06	2,49E-06	4,00E-07

Tabla 7.6. Emisiones atmosféricas maquinaria construcción carreteras

7.3.3.- Escenario 3

Para la fase de preparación del terreno se va a emplear un tractor con grada rotativa, tomando como referencia el proceso de Ecoinvent "tillage, harrowing, by rotary harrow" el cual se estima con una duración de 2 días. La fase de aplicación de la escoria se va a realizar con una abonadora centrífuga, utilizando el inventario de Ecoinvent "Fertilising, by broadcaster" cuyo proceso se estima con una duración de 1 día [61].

El suelo objeto de estudio está contaminado por la actividad de la industria siderúrgica, tiene una profundidad de 30 cm, una densidad de 1200 kg/m³ y un pH de 5, se pretende elevar este pH hasta el valor final de 7 que es cuando se produce la inmovilización de los metales pesados del suelo. Para encalar el suelo es recomendable evitar elevar el pH del suelo en más de un punto de un año para otro con el propósito de evitar el bloqueo de los

nutrientes. Por consiguiente, se van a realizar dos encalados, un primer encalado para elevar el pH a un valor de 6 y un segundo encalado al año siguiente para elevar el pH al valor objetivo de 7. No se incluyen los procesos de mantenimiento para compensar la acidificación natural del suelo [61].

Para determinar la equivalencia de la escoria y la cal a emplear se han utilizado los análisis para diferentes granulometrías del Centro Tecnológico AIMEN (Asociación de Investigación Metalúrgica del Noroeste):

- Granulometría 0-20 mm: 50% cal
- Granulometría 20-50 mm: 42% cal
- Mezcla Granulometrías 0-20 mm y 20-50 mm: 46% cal

En este caso se emplea una mezcla de las dos granulometrías y por tanto el porcentaje de escoria corresponde a un 46% de la cantidad que se emplea de cal. Para un proceso de encalado se establece como estándar la aplicación de 450 g/m² de cal siendo equivalente a 980 g/m² de escoria BOF [51]. En este caso se van a necesitar 27,17 toneladas de escoria para encalar 1 ha de suelo. En la Tabla 7.7 [61] se detallan las cantidades de escoria BOF que se necesitan para encalar el suelo para cada uno de los períodos establecidos.

	Caliza (ton/ha)	Escoria (ton/ha)
Año 1	5	10,87
Año 2	7,5	16,30
Total	12,5	27,17

Tabla 7.7. Cantidades de caliza y las cantidades equivalentes de escoria.

A continuación, se muestra una tabla resumen (Tabla 7.8) comparando las entradas y salidas de las fases de cada uno de los escenarios para ver de manera más visual el inventario. También se incluye un anexo (apartado 11) con tres tablas, una para cada escenario con una descripción más detallada del inventario utilizado (Tabla 11.1, Tabla 11.2, Tabla 11.3).

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios para la valorización de la escoria de acería) – Página 47 de 69

		Escenario	Escenario	Escenario	TT • 1 1
Fase	Entrada/Salida	1	2	3	Unidad
Molienda	Energía	4,65	-	-	kWh
	Aceite lubricante	0,000450	-	-	kg
Cribado	Energía	0,236127	0,236127	-	kWh
	Escoria descartada	100	500	-	kg
Secado	Energía	38,4667	-	-	kWh
Transporte	transport, freight, lo	orry 3.5-7.5 m	etric ton, EU	RO4	ton•km
Fresado	Gasoil	-	1,090176	-	kg
	Emisiones	-	0,069218	-	kg
Mezclado	Áridos	-	5663,3245	-	kg
	Betún	-	370,97625	-	kg
	Electricidad	-	23,07250	-	kWh
Uso	Arenero				
	Energía	95,0079	-	-	KWh
	Pavimentación				
	Gasoil	-	0,323273	-	kg
	Emisiones	-	0,020251	-	kg
	Compactación				
	Gasoil	-	0,051971	-	kg
	Emisiones	-	0,003256	-	kg
	Preparación suelo			tillage,	ha
				harrowing	
		-	-	, by rotary	
				harrow	
	Aplicación escoria			Fertilising	ha
				, <i>by</i>	
		-	-	broadcast	
				er	

Tabla 7.8.- Tabla resumen inventario.

8. Evaluación e Interpretación del Impacto del Ciclo de Vida (EICV)

Una vez establecidos los diferentes flujos de entrada y salida en el inventario ambiental se pasó a la fase de evaluación a través del programa *SimaPro*. Los resultados obtenidos se van a representar mediante gráficas para facilitar su comprensión y su interpretación. Además, las categorías se muestran mediante siglas para simplificar su representación gráfica, en la Tabla 8.1 se muestran las siglas junto a los conceptos que se refieren.

Categoría de impacto	
Calentamiento global	CG
Agotamiento del ozono estratosférico	AO
Radiación ionizante	RI
Formación de ozono, Salud humana	OSH
Formación de materia particulada fina	MP
Formación de ozono, Ecosistemas terrestres	OET
Acidificación terrestre	AT
Eutrofización de agua dulce	EUAD
Eutrofización marina	EUM
Ecotoxicidad terrestre	ECT
Ecotoxicidad de agua dulce	ECAD
Ecotoxicidad marina	ECM
Toxicidad cancerígena humana	TCH
Toxicidad no cancerígena humana	TNCH
Uso del suelo	US
Escasez de recursos minerales	ERM
Escasez de recursos fósiles	ERF
Consumo de agua	CA

Tabla 8.1.- Tabla de categorías de impacto *Midpoints*.

Primero se va a analizar escenario a escenario los datos normalizados evaluados mediante el método *Midpoint*, comparando las fases de cada escenario con las categorías de impacto. En el **escenario 1**, chorreado abrasivo (Figura 8.1), se puede observar que la categoría con más impacto es la TCH (Toxicidad cancerígena humana) y la fase con mayor repercusión es la fase de uso seguida de la de secado, es decir la aplicación de la escoria mediante la máquina de chorreado sobre la superficie de acero. Este valor tan elevado de TCH es debido al gran consumo de electricidad de la máquina de chorreado requerida para este tipo de aplicaciones que genera un impacto de 0,26 kg 1,4-DCB y de 0,12 kg 1,4-DCB para el secador rotativo.

Dependiendo del método de producción puede impactar más o menos. Si se genera a partir de combustibles fósiles se pueden liberar contaminantes al aire siendo algunos de estos cancerígenos (el benceno, el formaldehído y el etilbenceno) [81]. Esto podría reducirse empleando fuentes de energía renovables como la solar, hidroeléctrica o la eólica.

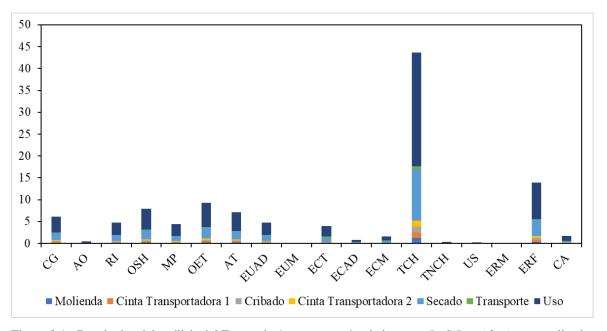


Figura 8.1.- Resultados del análisis del Escenario 1 por categorías de impacto ReCiPe midpoint normalizado.

En la Figura 8.2 se representan los resultados de impacto obtenidos para el **escenario 2,** construcción de carreteras. Se puede apreciar que la fase con más impacto es la de "Mezclado", donde se calientan todos los materiales constituyentes (betún y áridos) a altas temperatura y se procede a la realización de la mezcla asfáltica. La categoría con más repercusión es la ERF (Escasez de recursos fósiles).

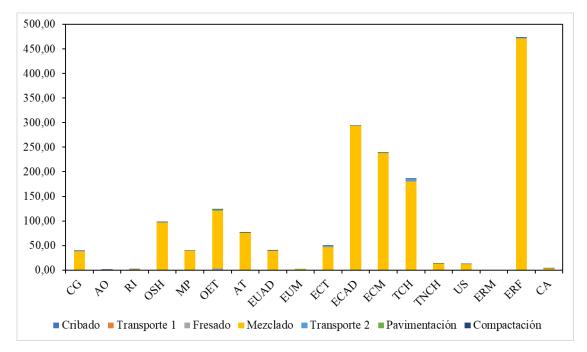


Figura 8.2.- Resultados del análisis del Escenario 2 por categorías de impacto ReCiPe midpoint normalizado.

Al analizar más concretamente la fase de mezclado (Figura 8.3) se puede observar que el elevado impacto de esta fase es consecuencia del betún, siendo este un material de origen fósil cuya utilización acarrea altos niveles en las categorías de ERF (Escasez de recursos fósiles), ECAD (Ecotoxicidad de agua dulce) y ECM (Ecotoxicidad marina).

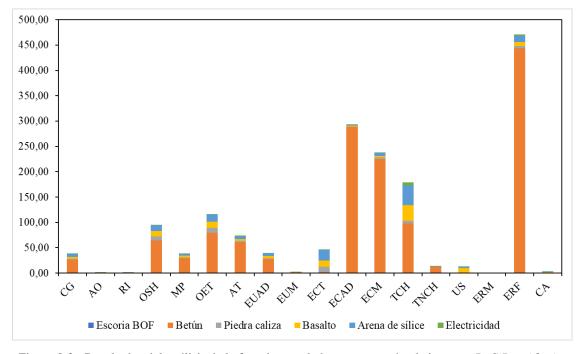


Figura 8.3.- Resultados del análisis de la fase de mezclado por categorías de impacto *ReCiPe midpoint* normalizado.

El betún es un subproducto de la destilación de petróleo crudo generado durante la producción de gasolina, por lo tanto, depende de un recurso fósil no renovable y puede contaminar con hidrocarburos los océanos y cuerpos de agua dulce si se producen filtraciones durante la extracción y transporte del petróleo.

En el **escenario 3,** encalado de suelo (Figura 8.4), el impacto ambiental mayor es el de la categoría TCH (Toxicidad cancerígena humana) y el proceso más contaminante es el de preparación del terreno. Para la preparación del terreno se emplea una grada rotativa acoplada a un tractor la cual consume combustible y emite una serie de contaminantes, parte de ellos tienen carácter cancerígeno como algunos hidrocarburos aromáticos policíclicos (HAP) [82].

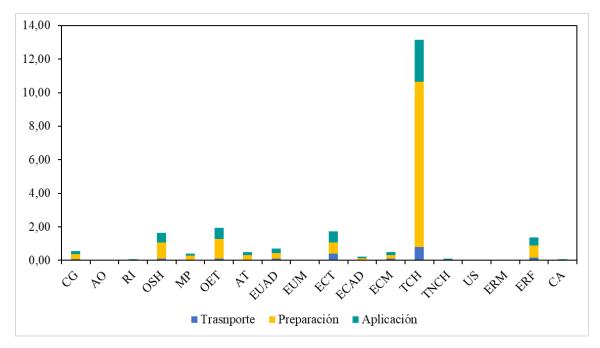


Figura 8.4.- Resultados del análisis del Escenario 3 por categorías de impacto ReCiPe midpoint normalizado.

Para saber que escenario tiene menos impacto y cuál más, se va a comparar en una misma gráfica los tres escenarios (Figura 8.5). Concluyendo que con mucha diferencia el **escenario 2** implica una mayor contaminación con respecto a los otros dos escenarios, sobre todo en la categoría ERF (Escasez de recursos fósiles). Con menor distancia se sitúa el **escenario 1** del **escenario 3**, siendo este último el de menor impacto ambiental (Figura 8.6).

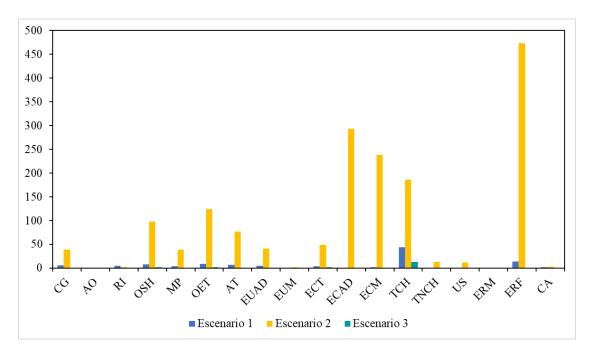


Figura 8.5.- Resultados del análisis los tres escenarios por categorías de impacto *ReCiPe midpoint* normalizado.

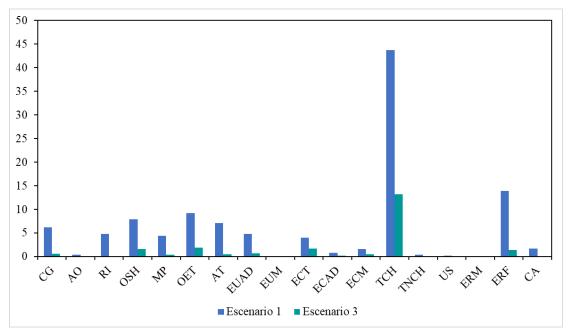


Figura 8.6.- Resultados del análisis del Escenario 1 y 3 por categorías de impacto *ReCiPe midpoint* normalizado.

En la Tabla 8.2 se presentan los valores numéricos totales (sin normalizar) obtenidos por el método *Midpoint* para cada escenario.

Categoría impacto	Unidad	Escenario 1	Escenario 2	Escenario 3
Calentamiento global	kg CO2 eq	49,400847	311,814828	4,481952
Agotamiento del ozono estratosférico	kg CFC11 eq	0,000025	0,000071	0,000002
Radiación ionizante	kBq Co-60 eq	2,316974	0,927386	0,030413
Formación de ozono, Salud humana	kg NOx eq	0,163217	2,021963	0,033764
Formación de materia particulada fina	kg PM2.5 eq	0,111908	1,002143	0,010443
Formación de ozono, Ecosistemas				
terrestres	kg NOx eq	0,164302	2,206164	0,034367
Acidificación terrestre	kg SO2 eq	0,292519	3,136267	0,019667
Eutrofización de agua dulce	kg P eq	0,003087	0,026348	0,000454
Eutrofización marina	kg N eq	0,000270	0,007565	0,000015
Ecotoxicidad terrestre	kg 1,4-DCB	60,001923	750,891205	26,199848
Ecotoxicidad de agua dulce	kg 1,4-DCB	0,020214	7,394131	0,005602
Ecotoxicidad marina	kg 1,4-DCB	0,069963	10,365226	0,021870
Toxicidad cancerígena humana	kg 1,4-DCB	0,449699	1,912654	0,135505
Toxicidad no cancerígena humana	kg 1,4-DCB	12,628335	413,001018	3,340918
Uso del suelo	m2a crop eq	1,326138	76,571004	0,175984
Escasez de recursos minerales	kg Cu eq	0,096330	0,213165	0,032113
Escasez de recursos fósiles	kg oil eq	13,591231	463,706628	1,341817
Consumo de agua	<i>m</i> 3	0,455322	0,878043	0,012538

Tabla 8.2.- Resultados del análisis de los tres escenarios por categorías de impacto Recipe midpoint.

A continuación, se realiza un análisis más detallado de algunas categorías ambientales. Se ha prestado una mayor atención a las emisiones de dióxido de carbono, es decir, la categoría de calentamiento global, y a la de ecotoxicidad terrestre, ya que ejercen un papel fundamental para comprender las consecuencias de la actividad humana sobre el medio ambiente. Mientras la ECT sólo afecta a los organismos terrestres siendo un impacto tóxico local, el CG tiene implicaciones medioambientales de carácter global afectando principalmente al clima.

El calentamiento global se mide en kg CO₂ eq para los diferentes escenarios agrupando sus diferentes procesos en tres fases: pretratamiento. transporte y uso. En el pretratamiento la mayor emisión de gases de efecto invernadero (GEI) es en el **escenario 1**

con un valor de 19,43 kg CO₂ eq por cada tonelada de escoria reutilizada. La fase de transporte es similar para los escenarios con un impacto considerablemente menor. En la fase de uso hay una gran diferencia entre escenarios. El empleo de una tonelada de escoria BOF en el **escenario 1** genera 29,54 kg CO₂ eq, el **escenario 2** produce 311,49 kg CO₂ eq y el **escenario 3**, 3,97 kg CO₂ eq. Por lo tanto, la mayor emisión de GEI vienen del **escenario 2** más específicamente del proceso de mezclado y el **escenario 3** es el que emite menos contaminantes (Figura 8.7 y Figura 8.8).

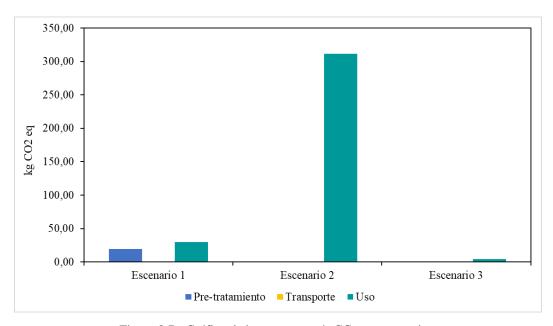


Figura 8.7.- Gráfico de barras categoría CG tres escenarios.

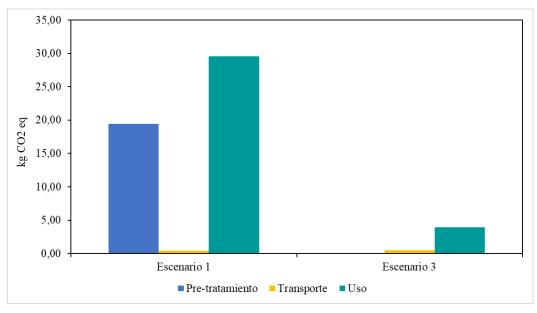


Figura 8.8.- Gráfico de barras categoría CG escenario 1 y 3.

Por otro lado, la ecotoxicidad terrestre, incluye los efectos tóxicos que ocasionan las sustancias químicas en los organismos terrestres medida en kg 1,4-DCB (compuesto químico 1,4-diclorobenceno). En el pretratamiento es el **escenario 1** el que tiene una mayor emisión con un valor de 19,87 kg 1,4-DCB. Para el transporte son valores bastante similares siendo el del **escenario 3** un poco superior, 6 kg 1,4-DCB. Finalmente, en la fase de uso hay una clara diferenciación entre escenarios: escenario 3 (20,19 kg 1,4-DCB), escenario 2 (747,81 kg 1,4-DCB) y escenario 1 (34,94 kg 1,4-DCB). Se puede concluir que el **escenario 2** es el más contaminante en términos de ecotoxicidad terrestre, en concreto en el proceso de utilización y el menos contaminante es el **escenario 3** (Figura 8.9 y Figura 8.10).

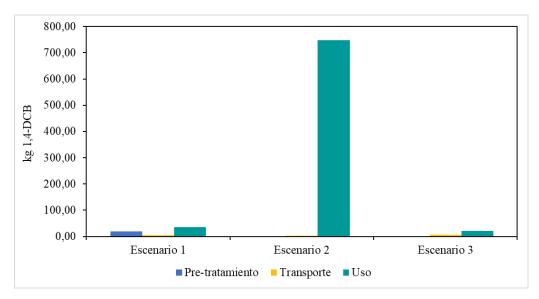


Figura 8.9.- Gráfico de barras categoría ECT tres escenarios.

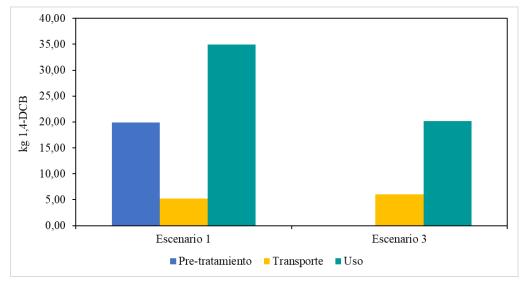


Figura 8.10.- Gráfico de barras categoría ETC escenario 1 y 3.

Tras realizar el análisis *Midpoint*, se procedió a evaluar los datos mediante un análisis *Endpoint* (H), enfrentando los tres escenarios con sus categorías de impacto. Se van a comparar la salud humana (*DALY*) que mide los efectos sobre la salud de las personas tras la exposición de contaminantes, ecosistemas (*species.yr*) que evalúa la consecuencia sobre la biodiversidad y los hábitats naturales, y los recursos (*USD2013*) que cuantifica la disponibilidad y el agotamiento del capital natural (renovable y no renovable). De manera general comparando las tres categorías se observa que la de mayor impacto es la de los recursos en el **escenario 2** como consecuencia de la extracción de los áridos y el betún (Figura 8.11).

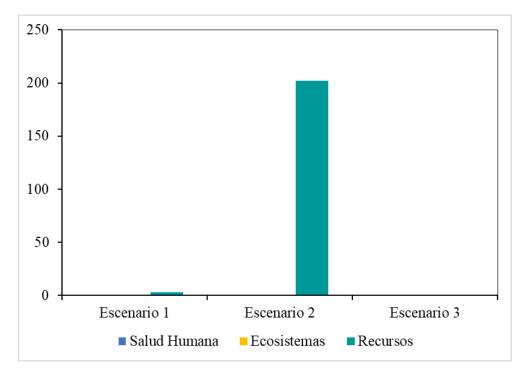


Figura 8.11.-Gráfíco de barras Recipe endpoint tres escenarios.

Como hay una gran diferencia numérica de los datos de una categoría con respecto a la otra se van a representar las tres categorías por separado para poder observar mejor las diferencias entre escenarios (Figura 8.12, Figura 8.13 y Figura 8.14). Para las tres categorías el escenario que tiene menos efectos es el **escenario 3** con una gran diferencia respecto al **escenario 2** y con menor distancia del **escenario 1.** El **escenario 2** tiene los siguientes impactos para cada categoría: salud humana (1,03E-03 *DALY*), ecosistemas (2,54E-06 *species.yr*) y recursos (202,09 *USD2013*).

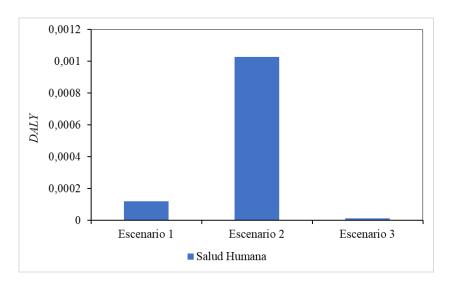


Figura 8.12.- Gráfico de barras categoría Salud humana.

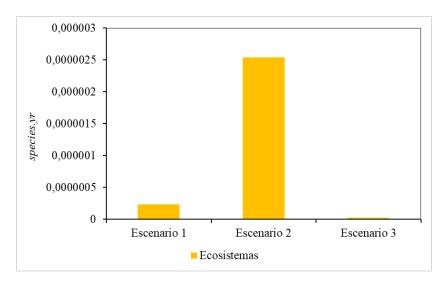


Figura 8.13.- Gráfico de barras categoría Ecosistemas.

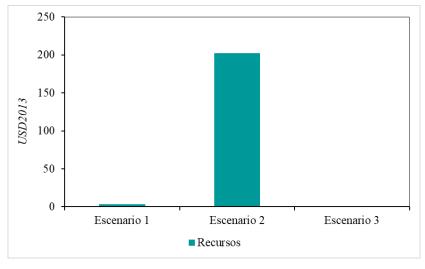


Figura 8.14.- Gráfico de barras categoría Recursos.

9. Conclusiones y líneas futuras

La escoria BOF es uno de los principales residuos de la industria siderúrgica del que se generan millones de toneladas al año en todo el mundo y, en la actualidad, se reaprovecha en cantidades mínimas. Debido a ello y como residuo principal de la industria siderúrgica, la viabilidad técnica de su empleo en diferentes aplicaciones ha sido ampliamente investigada a lo largo de los años. Sin embargo, que sea técnicamente viable no implica que también lo sea desde un punto de vista medioambiental.

Por otro lado, el uso de la escoria BOF se ha investigado en infinidad de aplicaciones que, en muchas ocasiones, no representan una salida real del residuo, o bien por que llevan implícito un porcentaje de valorización extremadamente pequeño en comparación con los altos volúmenes generados, o bien porque requieren intensos pretratamientos para que su uso sea viable.

La viabilidad ambiental en comparación con el uso de otras materias primas en las aplicaciones planteadas ya ha sido objeto de estudio. Sin embargo, en ningún caso se ha llegado a analizar qué aplicación compensa más una vez superada la barrera técnica. En el presente Trabajo Fin de Grado se ha evaluado la viabilidad ambiental de diferentes soluciones planteadas como vía de reutilización de 1000kg de escoria BOF.

Específicamente, este trabajo se ha centrado en aplicaciones no estructurales o donde sus principales problemas de inestabilidad volumétrica no sea un problema para su valorización y representen una opción real a un residuo del que se generan miles de toneladas al año en todo el mundo: **carreteras, remediación ambiental y abrasivos**. Fruto de este trabajo se han podido extraer las siguientes conclusiones:

- Atendiendo a los resultados obtenidos por el método *Midpoint*, se puede afirmar que el escenario 2 de construcción de carreteras, es el que más impacto negativo tiene sobre el medio en relación con los otros dos escenarios, en concreto para la categoría ERF (Escasez de recursos fósiles). Esto es debido principalmente a la utilización del betún necesario para fabricar la mezcla asfáltica, el cuál es un

recurso fósil no renovable. Además, debido a los porcentajes de uso de la escoria BOF considerados para esta aplicación en base a la literatura científica, para conseguir reutilizar una tonelada de escoria en la construcción de carreteras, serían necesario 370 kg de betún.

- Para las categorías *Midpoints* de CG (calentamiento global) y ECT (ecotoxicidad terrestre) el escenario que genera menos emisiones de gases de efecto invernadero (GEI) y que ocasiona un menor efecto tóxico sobre los organismos terrestre es el escenario 3. Por el contrario, en la categoría de CG el escenario 2 emite 307,33 kg CO₂ eq más que el escenario 3 y 262,41 kg de CO₂ eq más que el escenario 1. En la categoría de ECT el escenario 2 genera 724,69 kg 1,4-DCB más que el escenario 3 y 690,89 kg 1,4-DCB más que el escenario 1.
- La evaluación por el método *Endpoint* muestra en concordancia con el método *Midpoint* que el **escenario 3** es el que ocasiona menos daños en la salud humana, en los ecosistemas y necesita menos recursos que los otros escenarios.
- De cara a futuros estudios para que los resultados de este ACV fueran más exhaustivos se necesitaría de la realización de un estudio ambiental del proceso de granallado de escoria para conocer más concretamente las emisiones generados en este proceso y así poder incluirlas en este análisis.
- Los resultados concluyen que el escenario con menor impacto ambiental es el escenario de reutilización de la escoria como agente de encalado, seguido de su aplicación en el chorreado de abrasivos. La aplicación con más impacto ambiental es la construcción de carreteras para llegar a valorizar la misma cantidad de escoria BOF.
- A pesar de esto, los tres escenarios suponen una opción positiva con respecto a la acumulación de la escoria en los vertederos, ya que permiten la recirculación de este residuo siderúrgico convirtiéndolo en un subproducto de valor para otras industrias. Debido a ello, como línea futura sería interesante realizar un análisis de sensibilidad respecto a la fuente de origen de la escoria BOF, ya que no es un

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios para la valorización de la escoria de acería) – Página 60 de 69

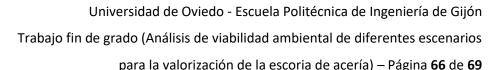
material que se encuentre directamente disponible en todo el territorio y la accesibilidad al recurso puede condicionar el impacto medioambiental de la aplicación en sí.

10.Bibliografía

- [1] U. P. Division, *World population prospects 2019.: Volume 2,: demographic profiles.* UN, 2019. Accedido: 8 de julio de 2024. [En línea]. Disponible en: https://population.un.org/wpp2019/Graphs/1_Demographic%20Profiles/World.pdf
- [2] «Presentaciones sectoriales Sector Metalurgia 2023», Ministerio de Industria y Turismo. Accedido: 16 de junio de 2024. [En línea]. Disponible en: https://www.mintur.gob.es/es-es/IndicadoresyEstadisticas/Paginas/presentaciones_sectoriales.aspx
- [3] «El uso del acero por sectores Ategi». Accedido: 9 de junio de 2024. [En línea]. Disponible en: https://ategi.com/2023/07/24/el-uso-del-acero-por-sectores/
- [4] «Annual production steel data worldsteel.org», Annual production steel data. Accedido: 8 de abril de 2024. [En línea]. Disponible en: https://worldsteel.org/data/annual-production-steel-data/?ind=P1_crude_steel_total_pub/CHN/IND
- [5] UNESID, «NOTA DE PRENSA UNESID Datos de producción de acero en 2023», UNESID. Accedido: 16 de junio de 2024. [En línea]. Disponible en: https://unesid.org/blog/unesid-datos-produccion-acero-2023/
- [6] «Estrategia de Economía Circular del Principado de Asturias. 2023-2030», asturias circular. Accedido: 18 de julio de 2024. [En línea]. Disponible en: https://medioambiente.asturias.es/documents/646140/0/Estrategia+Asturias+Circular+2 023-2030.pdf/f9b5d692-f4ee-f313-431d-0d6c634b394e
- [7] «Circular economy introduction». Accedido: 10 de junio de 2024. [En línea]. Disponible en: https://www.ellenmacarthurfoundation.org/topics/circular-economy-introduction/overview
- [8] «Eliminate waste and pollution». Accedido: 8 de abril de 2024. [En línea]. Disponible en: https://www.ellenmacarthurfoundation.org/eliminate-waste-and-pollution
- [9] «Circulate products and materials». Accedido: 8 de abril de 2024. [En línea]. Disponible en: https://www.ellenmacarthurfoundation.org/circulate-products-and-materials
- [10] «Regenerate nature». Accedido: 8 de abril de 2024. [En línea]. Disponible en: https://www.ellenmacarthurfoundation.org/regenerate-nature
- [11] «CGR 2024». Accedido: 8 de abril de 2024. [En línea]. Disponible en: https://www.circularity-gap.world/2024
- [12] X. E. Castells, *Reciclaje de residuos industriales: residuos sólidos urbanos y fangos de depuradora*. Díaz de Santos, 2009. Accedido: 8 de abril de 2024. [En línea]. Disponible en: https://dialnet.unirioja.es/servlet/libro?codigo=357288
- [13] M. Díaz Piloñeta, M. Terrados Cristos, F. de A. Ortega Fernández, y G. M. Martínez Huerta, «Influencia del proceso en la sostenibilidad de los residuos: el caso de la escoria de acería.», *Proc. Int. Congr. Proj. Manag. Eng.*, 2022, Accedido: 16 de junio de 2024. [En línea]. Disponible en: https://digibuo.uniovi.es/dspace/handle/10651/68771
- [14] «Steel industry co-products», worldsteel.org. Accedido: 8 de abril de 2024. [En línea]. Disponible en: https://worldsteel.org/steel-topics/environment/steel-industry-co-products/
- [15] Centro de Estudios y Experimentación de Obras Públicas (CEDEX), «Escoria de acería LD», 2012. Accedido: 11 de junio de 2024. [En línea]. Disponible en:

para la valorización de la escoria de acería) - Página 62 de 69

- $https://www.cedex materiales.es/upload/docs/es_ESCORIASDEACERIALDDIC 2012.\\pdf$
- [16] «Properties», Euroslag. Accedido: 20 de abril de 2024. [En línea]. Disponible en: https://www.euroslag.com/products/properties/
- [17] T. S. Naidu, C. M. Sheridan, y L. D. van Dyk, «Basic oxygen furnace slag: Review of current and potential uses», *Miner. Eng.*, vol. 149, p. 106234, abr. 2020, doi: 10.1016/j.mineng.2020.106234.
- [18] M.-S. Ko, Y.-L. Chen, y J.-H. Jiang, «Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties», *Constr. Build. Mater.*, vol. 98, pp. 286-293, nov. 2015, doi: 10.1016/j.conbuildmat.2015.08.051.
- [19] S. C. Zago, F. Vernilli, y O. Cascudo, «The Reuse of Basic Oxygen Furnace Slag as Concrete Aggregate to Achieve Sustainable Development: Characteristics and Limitations», *Buildings*, vol. 13, n.° 5, Art. n.° 5, may 2023, doi: 10.3390/buildings13051193.
- [20] F. M. Francisca y D. A. Glatstein, «Influence of pH on cadmium, copper, and lead removal from wastewater by steel slag», *Desalination Water Treat.*, vol. 57, n.º 45, pp. 21610-21618, sep. 2016, doi: 10.1080/19443994.2015.1119748.
- [21] Y. Gao *et al.*, «BOF steel slag as a low-cost sorbent for vanadium (V) removal from soil washing effluent», *Sci. Rep.*, vol. 7, n.° 1, p. 11177, sep. 2017, doi: 10.1038/s41598-017-11682-3.
- [22] J. Choi y W. S. Shin, «Application of aqueous carbonated slags in the immobilization of heavy metals in field-contaminated soils», *Environ. Eng. Res.*, vol. 25, n.° 3, pp. 356-365, jun. 2020, doi: 10.4491/eer.2019.101.
- [23] F. M. Francisca y D. A. Glatstein, «Environmental application of basic oxygen furnace slag for the removal of heavy metals from leachates», *J. Hazard. Mater.*, vol. 384, p. 121294, feb. 2020, doi: 10.1016/j.jhazmat.2019.121294.
- [24] M. M. López, A. G. Lavín, y H. S. Andrés, «Biosólidos generados en la depuración de aguas (I): planteamiento del problema», *Ing. Agua*, vol. 3, n.º 2, Art. n.º 2, jun. 1996, doi: 10.4995/ia.1996.2698.
- [25] Ministerio de Agricultura, Pesca y Alimentación, *Real Decreto 1310/1990*, *de 29 de octubre, por el que se regula la utilización de los lodos de depuración en el sector agrario*, vol. BOE-A-1990-26490. 1990, pp. 32339-32340. Accedido: 22 de junio de 2024. [En línea]. Disponible en: https://www.boe.es/eli/es/rd/1990/10/29/1310
- [26] E. González-Tolivia, S. Collado, P. Oulego, y M. Díaz, «BOF slag as a new alkalizing agent for the stabilization of sewage sludge», *Waste Manag.*, vol. 153, pp. 335-346, nov. 2022, doi: 10.1016/j.wasman.2022.09.009.
- [27] H.-P. Mattila, H. Hudd, y R. Zevenhoven, «Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag», *J. Clean. Prod.*, vol. 84, pp. 611-618, dic. 2014, doi: 10.1016/j.jclepro.2014.05.064.
- [28] L. V. Fisher y A. R. Barron, «The recycling and reuse of steelmaking slags A review», *Resour. Conserv. Recycl.*, vol. 146, pp. 244-255, jul. 2019, doi: 10.1016/j.resconrec.2019.03.010.
- [29] C. Lausín González, «Valorización de la escoria LD como árido en hormigones y ladrillos cerámicos: estabilización de la cal libre con cenizas volantes», doctoral thesis, 2014. Accedido: 23 de junio de 2024. [En línea]. Disponible en: https://digibuo.uniovi.es/dspace/handle/10651/29020
- [30] H. Shen y E. Forssberg, «An overview of recovery of metals from slags», *Waste Manag.*, vol. 23, n.° 10, pp. 933-949, ene. 2003, doi: 10.1016/S0956-053X(02)00164-2.


para la valorización de la escoria de acería) - Página 63 de 69

- [31] K. Schraut *et al.*, «Synthesis and characterisation of alites from reduced basic oxygen furnace slags», *Cem. Concr. Res.*, vol. 147, p. 106518, sep. 2021, doi: 10.1016/j.cemconres.2021.106518.
- [32] Q. Wang, P. Yan, J. Yang, y B. Zhang, «Influence of steel slag on mechanical properties and durability of concrete», *Constr. Build. Mater.*, vol. 47, pp. 1414-1420, oct. 2013, doi: 10.1016/j.conbuildmat.2013.06.044.
- [33] A. Piemonti, A. Conforti, L. Cominoli, S. Sorlini, A. Luciano, y G. Plizzari, «Use of Iron and Steel Slags in Concrete: State of the Art and Future Perspectives», *Sustainability*, vol. 13, n.° 2, Art. n.° 2, ene. 2021, doi: 10.3390/su13020556.
- [34] M. Jawad Ahmed, W. Franco Santos, y H. J. H. Brouwers, «Air granulated basic Oxygen furnace (BOF) slag application as a binder: Effect on strength, volumetric stability, hydration study, and environmental risk», *Constr. Build. Mater.*, vol. 367, p. 130342, feb. 2023, doi: 10.1016/j.conbuildmat.2023.130342.
- [35] M. J. Ahmed, S. Durand, M. Antoun, F. Gauvin, S. Amziane, y H. J. H. Brouwers, «Utilization of air granulated basic oxygen furnace slag as a binder in belite calcium sulfoaluminate cement: A sustainable alternative», *J. Clean. Prod.*, vol. 436, p. 140539, ene. 2024, doi: 10.1016/j.jclepro.2023.140539.
- [36] T. Koh, S.-W. Moon, H. Jung, Y. Jeong, y S. Pyo, «A Feasibility Study on the Application of Basic Oxygen Furnace (BOF) Steel Slag for Railway Ballast Material», *Sustainability*, vol. 10, n.° 2, Art. n.° 2, feb. 2018, doi: 10.3390/su10020284.
- [37] M. Esmaeili, R. Nouri, y K. Yousefian, «Experimental comparison of the lateral resistance of tracks with steel slag ballast and limestone ballast materials», *Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit*, vol. 231, n.º 2, pp. 175-184, feb. 2017, doi: 10.1177/0954409715623577.
- [38] J. I. L. Goicoechea, «Procedimiento para la fabricación de contrapesos de alta densidad», ES2183673B1, 1 de septiembre de 2004 Accedido: 23 de junio de 2024. [En línea]. Disponible en: https://patents.google.com/patent/ES2183673B1/es
- [39] D. Kong, M. Chen, J. Xie, M. Zhao, y C. Yang, «Geometric Characteristics of BOF Slag Coarse Aggregate and its Influence on Asphalt Concrete», *Materials*, vol. 12, n.° 5, Art. n.° 5, ene. 2019, doi: 10.3390/ma12050741.
- [40] S. Li *et al.*, «Research Progress on Skid Resistance of Basic Oxygen Furnace (BOF) Slag Asphalt Mixtures», *Materials*, vol. 13, n.° 9, Art. n.° 9, ene. 2020, doi: 10.3390/ma13092169.
- [41] T. Yang, M. Chen, y S. Wu, «Removal Effect of Basic Oxygen Furnace Slag Porous Asphalt Concrete on Copper and Zinc in Road Runoff», *Materials*, vol. 14, n.° 18, Art. n.° 18, ene. 2021, doi: 10.3390/ma14185327.
- [42] Y. Zhao, J. Song, J. Xie, F. Wang, M. Chen, y S. Wu, «Evaluation of the Volume Stability and Resource Benefit of Basic Oxygen Furnace Slag and Its Asphalt Mixture Based on Field Application», *Adv. Civ. Eng.*, vol. 2021, p. e6676154, dic. 2021, doi: 10.1155/2021/6676154.
- [43] L. H. Nguyen *et al.*, «Steel slag quality control for road construction aggregates and its environmental impact: case study of Vietnamese steel industry—leaching of heavy metals from steel-making slag», *Environ. Sci. Pollut. Res.*, vol. 29, n.° 28, pp. 41983-41991, jun. 2022, doi: 10.1007/s11356-021-16438-1.
- [44] J. Liu *et al.*, «Towards the sustainable utilization of steel slag in asphalt pavements: A case study of moisture resistance and life cycle assessment», *Case Stud. Constr. Mater.*, vol. 18, p. e01722, jul. 2023, doi: 10.1016/j.cscm.2022.e01722.

- para la valorización de la escoria de acería) Página 64 de 69
- [45] Z. Dai *et al.*, «Potential role of biochars in decreasing soil acidification A critical review», *Sci. Total Environ.*, vol. 581-582, pp. 601-611, mar. 2017, doi: 10.1016/j.scitotenv.2016.12.169.
- [46] A. C. F. Deus *et al.*, «The Comprehensive Utilization of Steel Slag in Agricultural Soils», en *Recovery and Utilization of Metallurgical Solid Waste*, IntechOpen, 2018. doi: 10.5772/intechopen.81440.
- [47] D. Ning, Y. Liang, Z. Liu, J. Xiao, y A. Duan, «Impacts of Steel-Slag-Based Silicate Fertilizer on Soil Acidity and Silicon Availability and Metals-Immobilization in a Paddy Soil», *PLOS ONE*, vol. 11, n.° 12, p. e0168163, dic. 2016, doi: 10.1371/journal.pone.0168163.
- [48] I. M. Fonseca, R. de M. Prado, A. de A. Vidal, y T. A. R. Nogueira, «Efeito da escória, calcário e nitrogênio na absorção de silício e na produção do capim-marandu», *Bragantia*, vol. 68, pp. 221-232, 2009, doi: 10.1590/S0006-87052009000100024.
- [49] G. S. A. Castro y C. A. C. Crusciol, «Produtividade e nutrição mineral de soja, milho e capim-ruziziensis influenciados por calcário e escória de siderurgia», *Pesqui. Agropecuária Bras.*, vol. 48, n.º 6, Art. n.º 6, sep. 2013.
- [50] T. Branca, B. Fornai, V. Colla, P. Chiara, y G. Ragaglini, «Application of basic oxygen furnace (bofs) in agriculture: a study on the economic viability and effects on the soil», *Environ. Eng. Manag. J.*, vol. 18, pp. 1231-1244, jun. 2019, doi: 10.30638/eemj.2019.118.
- [51] M. Díaz-Piloneta, F. Ortega-Fernández, M. Terrados-Cristos, y J. V. Álvarez-Cabal, «Application of Steel Slag for Degraded Land Remediation», *Land*, vol. 11, n.º 2, Art. n.º 2, feb. 2022, doi: 10.3390/land11020224.
- [52] M. Diaz Piloñeta, F. Ortega Fernandez, J. M. Mesa Fernández, y H. Moran Palacios, «EVALUATION OF THE USE OF BOF SLAGS FOR PREPARING SURFACE BY BLASTING», *DYNA*, vol. 95, n.º 1, pp. 158-162, mar. 2020, doi: 10.6036/9602.
- [53] A. Díaz Suárez, «Economía circular de los residuos siderúrgicos: sustitución de abrasivos tradicionales», master thesis, 2017. Accedido: 12 de junio de 2024. [En línea]. Disponible en: https://digibuo.uniovi.es/dspace/handle/10651/43682
- [54] «UNE-EN ISO 14040:2006», AENORmas. Accedido: 12 de junio de 2024. [En línea]. Disponible en: https://plataforma-aenormas-aenorcom.uniovi.idm.oclc.org/standard/UNE/N0038060
- [55] «UNE-EN ISO 14044:2006», AENORmas. Accedido: 12 de junio de 2024. [En línea]. Disponible en: https://plataforma-aenormas-aenorcom.uniovi.idm.oclc.org/standard/UNE/N0038059
- [56] V. Sychuk y O. Zabolotnyi, «Ways of abrasive blasting technology development», *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 1060, p. 012005, feb. 2021, doi: 10.1088/1757-899X/1060/1/012005.
- [57] ISO 8503-1, Preparation of steel substrates before application of paints and related products Surface roughness characteristics of blast-cleaned steel substrates Part 1: Specifications and definitions for ISO surface profile comparators for the assessment of abrasive blast-cleaned surfaces. 2012. Accedido: 23 de enero de 2023. [En línea]. Disponible en: https://www.iso.org/standard/38498.html
- [58] European Commission, «Greening the European aggregate industry», Eco-innovation Action Plan European Commission. Accedido: 4 de febrero de 2021. [En línea]. Disponible en: https://ec.europa.eu/environment/ecoap/about-eco-innovation/policies-matters/eu/597_en
- [59] «Asphalt in Figures key figures of the European asphalt industry», EAPA. Accedido: 28 de abril de 2024. [En línea]. Disponible en: https://eapa.org/asphalt-in-figures/

para la valorización de la escoria de acería) - Página 65 de 69

- [60] M. Díaz-Piloneta, M. Terrados-Cristos, J. V. Álvarez-Cabal, y E. Vergara-González, «Comprehensive Analysis of Steel Slag as Aggregate for Road Construction: Experimental Testing and Environmental Impact Assessment», *Materials*, vol. 14, n.º 13, p. 3587, jun. 2021, doi: 10.3390/ma14133587.
- [61] P. L. Rosario y M. Á. V. Berrocal, «Evaluación de la sostenibilidad de las diferentes técnicas de recuperación de suelos contaminados», 2013.
- [62] R. S. Ayers y D. W. Westcot, *Calidad del agua para la agricultura*. Organización de las Naciones Unidas para la Agricultura y la Alimentación, 1976.
- [63] 2003/33/CE: Decisión del Consejo, de 19 de diciembre de 2002, por la que se establecen los criterios y procedimientos de admisión de residuos en los vertederos con arreglo al artículo 16 y al anexo II de la Directiva 1999/31/CEE, vol. 011. 2002. Accedido: 28 de abril de 2024. [En línea]. Disponible en: http://data.europa.eu/eli/dec/2003/33(1)/oj/spa
- [64] «ecoinvent Data with purpose.» Accedido: 5 de junio de 2024. [En línea]. Disponible en: https://ecoinvent.org/
- [65] SimaPro / LCA software for informed changemakers. Accedido: 8 de julio de 2024. [En línea]. Disponible en: https://simapro.com/
- [66] L. Gan, H.-F. Wang, C.-X. Zhang, X.-P. Li, y Y.-H. Qi, «Specific energy consumption of grinding and powder characteristics of blast furnace slag and basic oxygen furnace slag», *Kang TiehIron Steel Peking*, vol. 46, pp. 92-95, sep. 2011.
- [67] F. C. Bond, Crushing and grinding calculations, Part I-II, 6.a ed. Br. Chem. Eng., 1961
- [68] S. Kodama, T. Nishimoto, N. Yamamoto, K. Yogo, y K. Yamada, «Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution», *Energy*, vol. 33, n.° 5, pp. 776-784, may 2008, doi: 10.1016/j.energy.2008.01.005.
- [69] M. Quattrone, S. C. Angulo, y V. M. John, «Energy and CO2 from high performance recycled aggregate production», *Resour. Conserv. Recycl.*, vol. 90, pp. 21-33, sep. 2014, doi: 10.1016/j.resconrec.2014.06.003.
- [70] A. Grbeš, «A Life Cycle Assessment of Silica Sand: Comparing the Beneficiation Processes», *Sustainability*, vol. 8, n.º 1, Art. n.º 1, ene. 2016, doi: 10.3390/su8010011.
- [71] C. Feng, B. Cui, Y. Huang, H. Guo, W. Zhang, y J. Zhu, «Enhancement technologies of recycled aggregate Enhancement mechanism, influencing factors, improvement effects, technical difficulties, life cycle assessment», *Constr. Build. Mater.*, vol. 317, p. 126168, ene. 2022, doi: 10.1016/j.conbuildmat.2021.126168.
- [72] E. Tsotsas, Modern Drying Technology V 4 Energy Savings: 04. Weinheim, 2011.
- [73] V. Sousa y J. A. Bogas, «Comparison of energy consumption and carbon emissions from clinker and recycled cement production», *J. Clean. Prod.*, vol. 306, p. 127277, jul. 2021, doi: 10.1016/j.jclepro.2021.127277.
- [74] F. J. Gómez-de la Cruz, A. Palomar-Torres, J. M. Palomar-Carnicero, y F. Cruz-Peragón, «Energy and exergy analysis during drying in rotary dryers from finite control volumes: Applications to the drying of olive stone», *Appl. Therm. Eng.*, vol. 200, p. 117699, ene. 2022, doi: 10.1016/j.applthermaleng.2021.117699.
- [75] H. Susanto *et al.*, «Analysis of the Sand Drying Process in the Biomass-Energized Rotary Drying Machine», *Proc. Pak. Acad. Sci.*, vol. 58, pp. 93-100, oct. 2021, doi: 10.53560/PPASA(58-sp1)741.
- [76] A. D. Suárez y F. O. Fernández, «ECONOMÍA CIRCULAR DE LOS RESIDUOS SIDERÚRGICOS: SUSTITUCIÓN DE ABRASIVOS TRADICIONALES».
- [77] CYM MATERIALES SA, «Estudio comparativo de Costo-Rendimiento entre Granalla de Acero y Escoria», CYM MATERIALES SA. Accedido: 6 de julio de 2024. [En

- línea]. Disponible en: https://cym.com.ar/intranet/Abrasivos-Granalla-acero-escoria-cobre-Comparativos-costo-cym-sandblasting-arenado.pdf
- [78] Clemco Industries Corp, «Nozzles: Clemlite Silicon Carbide Lined Rubbler Jacketed—Long Venturi». Accedido: 6 de julio de 2024. [En línea]. Disponible en: https://www.clemcoindustries.com/images/pdfs/28505.pdf
- [79] R. Vidal, E. Moliner, G. Martínez, y M. C. Rubio, «Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement», *Resour. Conserv. Recycl.*, vol. 74, pp. 101-114, may 2013, doi: 10.1016/j.resconrec.2013.02.018.
- [80] G. Etiope, «EMEP/EEA air pollutant emission inventory guidebook 2009», report, 2009. Accedido: 6 de junio de 2024. [En línea]. Disponible en: https://www.earth-prints.org/handle/2122/6042
- [81] H. Patel y L. Feldman, «Fossil Fumes / A public health analysis of toxic air pollution from the oil and gas industry», Clean Air Task Force, 2022. Accedido: 17 de julio de 2024. [En línea]. Disponible en: https://www.catf.us/es/resource/fossil-fumes-publichealth-analysis/
- [82] «Current intelligence bulletin 50 carcinogenic effects of exposure to diesel exhaust.», U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, ago. 1988. doi: 10.26616/NIOSHPUB88116.

Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios para la valorización de la escoria de acería) –

11.Anexos

11.1.- INVENTARIO ESCENARIO 1

		Entrada	Unidad	Cantidad	Procedencia	Salida	Unidad	Cantidad	Destino
E1.1	Molienda	Escoria BOF (0-20mm)	kg	1000	Industria acero	Escoria BOF (<2mm)	kg	1000	E1.2
		Aceite lubricante	kg	0,000450	Tecnosfera				
		Electricidad	kWh/t	4,65	Tecnosfera				
E1.2	Cinta transportadora	Escoria BOF (<2mm) Electricidad	kg kWh/t		E1.1 Tecnosfera	Escoria BOF (<2mm)	kg	1000	E1.3
E1.3	Cribado	Escoria BOF (<2mm)	kg	,	E1.2	Escoria BOF (2-0,2mm)	kg	900	E1.4
		Electricidad	kWh/t	0,236127	Tecnosfera	Residuos escoria (<0,2mm)	kg	100	Vertedero
E1.4	Cinta transportadora	Escoria BOF(2-0,2mm) Electricidad	kg kWh/t	900 0,166667	E1.3	Escoria BOF (2-0,2mm)	kg	900	E1.5
E1.5	Secado	Escoria BOF (2-0,2mm)	kg	900	E1.4	Escoria BOF (2-0,2mm)	kg	864	E1.6
		Electricidad	kWh	38,466667	Tecnosfera	Agua	kg	36	Depuradora
E1.6	Transporte	Escoria BOF (2-0,2mm)	kg	864	E1.5	Escoria BOF (2-0,2mm)	kg	846	E1.7
	Camión	Gasoil	kg	Ecoinvent	Tecnosfera	Emisiones	kg	Ecoinvent	Atmósfera
E1.7	Uso	Escoria BOF (2-0,2mm)	kg	864	E1.6	Escoria BOF (2-0,2mm)	kg	864	=
	Chorreado	Electricidad	kWh/ton	95,00793	Tecnosfera	Emisiones	kg	-	Atmósfera

Tabla 11.1.- Inventario escenario 1.

Página **68** de **69**

11.2.- INVENTARIO ESCENARIO 2

		Entrada	Unidad	Cantidad	Procedencia	Salida	Unidad	Cantidad	Destino
E1.1	Tratamiento	Escoria BOF (0-20mm)	kg	1000	Industria acero	Escoria BOF (10-20mm)	kg	500	E1.2
	Cribado	Electricidad	kWh	0,236127	Tecnosfera	Residuos escoria (0-10mm)	kg	500	Vertedero
E1.2	Transporte	Escoria BOF (10-20mm)	kg	500	E1.1	Escoria BOF (10-20mm)	kg	500	E1.4
	Camión	Gasoil	kg	Ecoinvent	Tecnosfera	Emisiones	kg	Ecoinvent	Atmósfera
E1.3	Fresado								
	Fresadora	Gasoil	kg	1,090176	Tecnosfera	Emisiones	kg	Tabla 7.6	Atmósfera
		CE	kWh/ton	4,292034	Tecnosfera				
E1.4	Mezclado	Escoria BOF (10-20mm)	kg	500	E1.2	Mezcla asfáltica	kg	7034,300792	E1.5
		Áridos	kg	5663,324538	Cantera				
		piedra caliza (50%)	kg	2831,662269					
		basalto (30%)	kg	1698,997361					
		arena de sílice (20%)	kg	1132,664908					
		Betún	kg	370,976253	Tecnosfera				
	Mezcladora								
		Electricidad	kWh	23,072506	Tecnosfera	Emisiones	kg	-	Atmósfera
E1.5	Transporte mezcla	Mezcla asfáltica	kg	7034,300792	E1.4	Mezcla asfáltica	kg	7034,300792	E1.6
	Camión	Gasoil	kg	Ecoinvent	Tecnosfera	Emisiones	kg	Ecoinvent	Atmósfera
E1.6	Pavimentación	Mezcla asfáltica	kg	7034,300792	E1.5	Mezcla asfáltica	kg	7034,300792	E1.7
	Pavimentadora	Gasoil	kg	0,323273	Tecnosfera	Emisiones	kg	Tabla 7.6	Atmósfera
		CE	kWh/ton	1,243358	Tecnosfera				
E1.7	Compactación	Mezcla asfáltica	kg	7034,300792	E1.6	Asfalto	kg	7034,300792	-
	Rodillo	Gasoil	kg	0,051971	Tecnosfera	Emisiones	kg	Tabla 7.6	Atmósfera
		CE	kWh/ton	0,199888	Tecnosfera				

Tabla 11.2.- Inventario escenario 2.

Trabajo fin de grado (Análisis de viabilidad ambiental de diferentes escenarios para la valorización de la escoria de acería) –

Página **69** de **69**

11.3.- INVENTARIO ESCENARIO 3

		Entrada	Unidad	Cantidad	Procedencia	Salida	Unidad	Cantidad	Destino
E1.1	Transporte	Escoria BOF (0-50mm)	kg	1000	Industria acero	Escoria BOF (0-50mm)	kg	1000	E1.2
	Camión	Gasoil	kg	Ecoinvent	Tecnosfera	Emisiones	kg	Ecoinvent	Atmósfera
E1.2	Preparación terreno Tractor con grada								
	rotativa	Gasoil	kg	Ecoinvent	Tecnosfera	Emisiones	kg	Ecoinvent	Atmósfera
E1.3	Aplicación escoria	Escoria BOF (0-50mm)	kg	1000	E1.2	Escoria BOF (0-50mm)	kg	1000	-
	Abonadora centrífuga	Gasoil	kg	Ecoinvent	Tecnosfera	Emisiones	kg	Ecoinvent	Atmósfera

Tabla 11.3.- Inventario escenario 3.